• Title/Summary/Keyword: cell culture RT-PCR

Search Result 272, Processing Time 0.024 seconds

Real-Time RT-PCR for Validation of Reovirus Type 3 Safety During the Manufacture of Mammalian Cell Culture-Derived Biopharmaceuticals (세포배양 유래 생물의약품 생산 공정에서 Reovirus Type 3 안전성 검증을 위한 Real-Time RT-PCR)

  • Lee, Dong-Hyuck;Jeong, Hyo-Sun;Kim, Tae-Eun;Oh, Seon-Hwan;Lee, Jung-Suk;Kim, In-Seop
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.228-236
    • /
    • 2008
  • Validation of viral safety is essential in ensuring the safety of mammalian cell culture-derived biopharmaceuticals, because numerous adventitious viruses have been contaminated during the manufacture of the products. Mammalian cells are highly susceptible to Reovirus type 3 (Reo-3), and there are several reports of Reo-3 contamination during the manufacture of biopharmaceuticals. In order to establish the validation system for the Reo-3 safety, a real-time RT-PCR method was developed for quantitative detection of Reo-3 in cell lines, raw materials, manufacturing processes, and final products as well as Reo-3 clearance validation. Specific primers for amplification of Reo-3 RNA was selected, and Reo-3 RNA was quantified by use of SYBR Green I. The sensitivity of the assay was calculated to be $3.2{\times}10^0\;TCID_{50}/ml$. The real-time RT-PCR method was proven to be reproducible and very specific to Reo-3. The established real-time RT-PCR assay was successfully applied to the validation of Chinese hamster ovary (CHO) cell artificially infected with Reo-3. Reo-3 RNA could be quantified in CHO cell as well as culture supernatant. When the real-time RT-PCR assay was applied to the validation of virus removal during a virus filtration process, the result was similar to that of virus infectivity assay. Therefore, it was concluded that this rapid, specific, sensitive, and robust assay could replace infectivity assay for detection and clearance validation of Reo-3.

Utilization of qPCR Technology in Water Treatment (수질분석에 사용되는 qPCR기술)

  • Kim, Won Jae;Hwang, Yunjung;Lee, Minhye;Chung, Minsub
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.235-241
    • /
    • 2022
  • According to the World Water Development Report 2015 released by the United Nations, drinking water is expected to decrease by 40% by 2030. This does not mean that the amount of water decreases, but rather that the water source is contaminated due to environmental pollution. Because microbes are deeply related to water quality, the analysis of microbe is very important for water quality management. While the most common method currently used for microbial analysis is microscopic examination of the shape and feature after cell culture, as the gene analysis technology advances, quantitative polymerase chain reaction (qPCR) can be applied to the microscopic microbiological analysis, and the application method has been studied. Among them, a reverse transcription (RT) step enables the analysis of RNA by RT-PCR. Integrated cell culture (ICC)-qPCR shortens the test time by using it with microbial culture analysis, and viability qPCR can reduce the false positive errors of samples collected from natural water source. Multiplex qPCR for improved throughput, and microfluidic qPCR for analysis with limited amount of sample has been developed In this paper, we introduce the case, principle and development direction of the qPCR method applied to the analysis of microorganisms.

Retrovirus Vector-Mediated Gene Transfer to the Chicken Blastodermal Cells Cultured In Vitro (체외 배양된 닭 배반엽 세포에 대한 Retrovirus Vector를 이용한 유전자 전이)

  • Park, Sung-Joon;Koo, Bon-Chul;Kwon, Mo-Sun;Chae, Whi-Gun;Kim, Te-Oan
    • Reproductive and Developmental Biology
    • /
    • v.34 no.3
    • /
    • pp.257-262
    • /
    • 2010
  • The purpose of this study is to establish a basic culture system enabling in vitro culture of chicken blastodermal cells and to test the feasibility of retrovirus-mediated gene transfer to the cultured cells. The blastodermal cells were isolated from freshly laid eggs of stage X and cultured with or without STO feeder layer cells. Stem cell-like morphology was maintained after multiple passages and RT-PCR analysis proved expression of several stem cell specific genes. Immunocytochemical analysis using antibodies of anti-EMA-1 and anti-SSEA-1 also showed the feature of stem cells. Infection of the cultured blastodermal cells with LNCGW retrovirus vector resulted in successful transfer of foreign genes. The results of this study may be useful in establishing stem cell-mediated transgenic chicken production.

Expression of the Antioxidant Enzyme and Apoptosis Genes in in vitro Maturation lin vitro Fertilization of Porcine Embryos

  • H. Y. Jang;H. S. Kong;Park, K. D.;G. J. Jeon;Lee, H. K.;B. K. Yang
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.47-47
    • /
    • 2003
  • The present study was conducted to determine the expression of the antioxidant enzyme(CuZn-SOD, Mn-SOD and GPX and apoptosis gene(caspase-3) for in vitro culture in in vitro maturation and in vitro fertilization(IVM/IVF) embryos in porcine. Porcine embryos derived from IVM/IVF were cultured in NCSU23 medium under 5% $CO_2$ in air at 38.5$^{\circ}C$. The patterns of gene expression for several antioxidant enzyme and apoptosis genes during preimplantion porcine embryo development were examined by the modified semi-quantitative single cell reverse transcriptase- polymerase chain reaction (RT-PCR). Preimplantation porcine embryos produced by IVM/IVF have expressed mRNAs for CuZn-SOD and GPX, whereas transcripts for Mn-SOD have not detected at any developmental stages. Expression of caspase-3 mRNA was detected at 2 cell, 8 cell, 16 cell and morula stages. The fas ligand transcripts were detected in porcine blastocyst. These results suggest that various antioxidant enzymes and apoptosis genes play crucial roles in in vitro culture of porcine IVM/IVF embryos.

  • PDF

In Vitro Culture of Nontransformed Cell Lines Derived from Rat Endometrial Epithelium and Stroma (흰쥐 자궁 상피와 내막에서 기원한 세포주의 체외배양)

  • Kang, Byung-Moon;Lee, Suk-Won;Chae, Hee-Dong;Kang, Eun-Hee;Chu, Hyung-Sik;Kim, Chung-Hoon;Chang, Yoon-Seok;Nam, Joo-Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.1
    • /
    • pp.83-87
    • /
    • 1999
  • Since the blastocyst is broken and spreads out on a flat plastic culture dish (two dimensional culture) during in vitro development, it has been difficult to study the implantation process. It also has been difficult to analyse the interactions between endometrial epithelial and stromal cells because of the lack of a long-term in vitro model which can stimulate in vivo characteristics, as these cells eventually fail to proliferate or cease to express differentiated functions. Recently nontransformed cell lines, CUE-P and CUS-V2, derived from rat endometrial epithelium and stroma were reported. In this study, morphology of CUE-P and CUS-V2 was examined and oxytocin gene expression by CUE-P cells was demonstrated by RT-PCR. The CUE-P cells have a cuboidal morphology and CUS-V2 cells resemble fibroblast and exhibit a spindle-like morphology. In RT-PCR, same size of PCR products of oxytocin gene at hypothalamus, uterus and CUE-P cells were demonstrated. These results showed three dimensional culture system could be made by using the new cell lines.

  • PDF

A Trial of Screening of Genes Involved in Odontoblasts Differentiation from Human Dental Pulp Stem Cells

  • Park, Yoon-Kyu;Kim, Hyun-Jin
    • International Journal of Oral Biology
    • /
    • v.37 no.4
    • /
    • pp.167-173
    • /
    • 2012
  • This study investigated the genes involved in the differentiation of odontoblasts derived from human dental pulp stem cells (hDPSCs). hDPSCs isolated from human tooth pulp were validated by fluorescence activated cell sorting (FACS). After odontogenic induction, hDPSCs were analyzed investigated by Alizaline red-S staining, ALP assay, ALP staining and RT-PCR. Differential display-polymerase chain reaction (DD-PCR) was performed to screen differentially expressed genes involved in the differentiation of hDPSCs. By FACS analysis, the stem cell markers CD24 and CD44 were found to be highly expressed in hDPSCs. When hDPSCs were treated with agents such as ${\beta}$-glycerophosphate (${\beta}$-GP) and ascorbic acid (AA), nodule formation was exhibited within six weeks. The ALP activity of hDPSCs was found to elevate over time, with a detectable up-regulation at 14 days after odontogenic induction. RT-PCR analysis revealed that dentin sialophosphoprotein (DSPP) and osteocalcin (OC) expression had increased in a time-dependent manner in the induction culture. Through the use of DD-PCR, several genes were differentially detected following the odontogenic induction. These results suggest that these genes may possibly be linked to a variety of cellular process during odontogenesis. Furthermore, the characterization of these regulated genes during odontogenic induction will likely provide valuable new insights into the functions of odontoblasts.

Expression of the Antioxidant Enzyme and Apoptosis Genes in In vitro Maturation/In vitro Fertilization Porcine Embryos

  • Jang, H.Y.;Kong, H.S.;Lee, S.S.;Choi, K.D.;Jeon, G.J.;Yang, B.K.;Lee, C.K.;Lee, H.K
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.1
    • /
    • pp.33-38
    • /
    • 2004
  • This study was aimed at testing the gene expression of antioxidant enzymes and apoptosis genes for in vitro culture in porcine embryos produced by in vitro maturation/in vitro fertilization (IVM/IVF). Pocine preimplantation embryos obtainted from IVM/IVF can be successfully culture in vitro, but they are delayed or stop to develop at specific developmental stage. Many factors such as reactive oxygen species and apoptosis in an IVM/IVF system followed by in vitro culture influence the rate of production of viable blastocysts. Porcine embryos derived from IVM/IVF were cultured in the atmosphere of 5% $CO_2$ and 20% $O_2$ at $38.5^{\circ}C$ in NCSU23 medium. The patterns of gene expression for antioxidant enzymes and apoptosis genes during in vitro culture in pocine IVM/IVF embryos were examined by the modified semi-quantitative single cell reverse transcriptase-polymerase chain reaction (RT-PCR). Porcine embryos produced by in vitro procedures were expressed mRNAs for CuZn-SOD, GAPDH and GPX, whereas transcripts for Mn-SOD and catalase were not detected at any developmental stages. Expression of caspase-3 mRNA was detected at 2 cell, 8 cell 16 cell and blastocyst, but p53 mRNA was not detected at any stages. The fas transcripts was only detected in blastocyst stage. These results suggest that various antioxidant enzymes and apoptosis genes play crucial roles in vitro culture of porcine IVM/IVF embryos.

CELLULAR ATTACHMENT AND GENE EXPRESSION OF OSTEOBLAST-LIKE CELLS ON ZIRCONIA CERAMIC SURFACES

  • Pae, Ah-Ran;Lee, Hee-Su;Kim, Hyeong-Seob; Baik, Jin;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.227-237
    • /
    • 2008
  • STATEMENT OF PROBLEM: Zirconium oxide can be a substitute to titanium as implant materials to solve the esthetic problems of dark color in the gingival portion of implant restorations. PURPOSE: This study was performed to define attachment and growth behavior of osteoblast- like cells cultured on grooved surfaces of zirconium oxide and evaluate the genetic effect of zirconium oxide surfaces using the reverse transcriptase-polymerase chain reaction (RT-PCR). MATERIAL AND METHODS: MC3T3-E1 cells were cultured on (1) commercially pure titanium discs with smooth surface (T group), (2) yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) with machined surface (ZS group), and (3) Y-TZP with $100{\mu}m$ grooves (ZG group). Cell proliferation activity was evaluated through MTT assay and cell morphology was examined by SEM. The mRNA expression of Runx2, alkaline phosphatase, osteocalcin, TGF-${\beta}1$, IGF-1, G3PDH in E1 cells were evaluated by RT-PCR. RESULTS: From the MTT assay, after 48 hours of adhesion of MC3T3-E1 cells, the mean optical density value of T group and ZG group significantly increased compared to the ZS group. SEM images of osteoblast-like cells showed that significantly more cells were observed to attach to the grooves and appeared to follow the direction of the grooves. After 24 hours of cell adhesion, more spreading and flattening of cells with active filopodia formation occurred. Results of RT-PCR suggest that T group, ZS group, and ZG group showed comparable osteoblast-specific gene expression after 24 hours of cell incubation. CONCLUSION: Surface topography and material of implants can play an important role in expression of osteoblast phenotype markers. Zirconia ceramic showed comparable biological responses of osteoblast-like cells with titanium during a short-time cell culture period. Also, grooves influence cell spreading and guide the cells to be aligned within surface grooves.

Real-Time AT-PCR for Quantitative Detection of Bovine Parainfluenza Virus Type 3 during the Manufacture of Biologics (생물의약품 제조공정에서 Bovine Parainfluenza Virus Type 3 정량 검출을 위한 Real-Time RT-PCR)

  • Lee, Dong-Hyuck;Kim, Chan-Kyong;Kim, Tae-Eun;Kim, In-Seop
    • KSBB Journal
    • /
    • v.23 no.4
    • /
    • pp.303-310
    • /
    • 2008
  • Bovine blood, cell, tissue, and organ are used as raw materials for manufacturing biologics such as biopharmaceuticals, tissue-engineered products, and cell therapy. Manufacturing processes for the biologics have the risk of viral contamination. Therefore viral validation is essential in ensuring the safety of the products. Bovine parainfluenza virus type 3 (BPIV3) is one of the common bovine pathogens and has widely been known as a contaminant of biologics. In order to establish the validation system for the BPIV3 safety of biologics, a real-time RT-PCR method was developed for quantitative detection of BPIV3 contamination in raw materials, manufacturing processes, and final products. Specific primers for amplification of BPIV3 RNA was selected, and BPIV3 RNA was quantified by use of SYBR Green I. The sensitivity of the assay was calculated to be 2.8 $TCID_{50}/mL$. The real-time RT-PCR method was validated to be reproducible and very specific to BPIV3. The established real-time RT-PCR assay was successfully applied to the validation of Chinese hamster ovary (CHO) cell artificially infected with BPIV3. BPIV3 RNA could be quantified in CHO cell as well as culture supernatant. Also the real-time RT-PCR assay could detect 7.8 $TCID_{50}/mL$ of BPIV3 artificially contaminated in bovine collagen. The overall results indicated that this rapid, specific, sensitive, and robust assay can be reliably used for quantitative detection of BPIV3 contamination during the manufacture of biologics.

Establishment of reverse transcription polymerase chain reaction for detection of Getah virus infection in livestock

  • Lee, Seung Heon;Yang, Dong-Kun;Kim, Ha-Hyun;Choi, Sung-Suk;Cho, In-Soo
    • Korean Journal of Veterinary Research
    • /
    • v.57 no.1
    • /
    • pp.37-42
    • /
    • 2017
  • Getah virus (GETV) infection causes sporadic outbreaks of mild febrile illness in horses and reproductive failure in pigs. In this study, we established a reverse transcription polymerase chain reaction (RT-PCR) method to detect GETV from suspected virus-infected samples. The reaction conditions were optimized and validated by using RNA extracted from GETV propagated in cell culture. A GETV-specific GED4 primer set was designed and used to amplify a 177 bp DNA fragment from a highly conserved region of the E1 glycoprotein gene in the GETV genome. RT-PCR performed with this primer set revealed high sensitivity and specificity. In the sensitivity test, the GED4 primer set detected GETV RNA at the level of $10^{2.0}\;TCID_{50}/mL$. In the specificity test, the GED4 primer set amplified only a single band of PCR product on the GETV RNA template, without non-specific amplification, and exhibited no cross-reactivity with other viral RNAs. These results suggest that this newly established RT-PCR method is useful for accurate identification of GETV infection in animals.