• Title/Summary/Keyword: cell characteristics

Search Result 6,496, Processing Time 0.034 seconds

Characteristics of a Magnetically Levitated Vehicle using a Small Number of Dry Cell Batteries

  • Kakinoki, Toshio;Yamaguchi, Hitoshi;Mukai, Eiichi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.200-206
    • /
    • 2014
  • This paper describes magnetically levitated vehicle with hybrid magnets, which have been studied by the authors in place of streetcars or conveyance system. An experimental vehicle of 20kg was magnetically levitated by using a small number of dry-cell batteries, which consisted of 10 Ni-MH cells of 1900mAh in series. The magnets were activated sequentially, because the internal resistance of the batteries suppressed the maximum current. The vehicle was kept levitating for about 2 hours and was stable against disturbance due to instantaneous external force. In this paper, dynamic characteristics of the magnetically levitated vehicle using a small number of dry cell batteries are presented.

Characteristics variation of PV module by damaged bypass diodes

  • Sin, U-Gyun;Jeong, Tae-Hui;Go, Seok-Hwan;Gang, Gi-Hwan;Jang, Hyo-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.424.2-424.2
    • /
    • 2016
  • Solar cell converts light energy to electric energy. But a solar cell generates low power, PV module is fabricated by connected in series with dozens of solar cell. Owing to solar cell connected in series, power of PV module is influenced by shading or mismatch power of solar cells. To prevent power loss of PV module by shading or mismatch current, Bypass diodes are installed in PV module. Bypass diode operating reverse voltage by shading or mismatch power of solar cells bypass mismatch current. However, bypass diode in module exposed outdoor is easily damaged by surge voltage. In this paper, we confirm characteristics variation of PV module with damaged bypass diode. As a result, power of PV module with damaged bypass diode is reduced and Temperature of that is increased.

  • PDF

Electrical characteristics of Sn $O_{2}$Si heterojunction solar cells depending on annealing temperature (열처리온도에 따른 $SnO_2$/Si 이종접합 태양전지의 전기적 특성)

  • 이재형;박용관
    • Electrical & Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.481-489
    • /
    • 1994
  • The $SnO_2$/(n)Si solar cell was fabricated by electron beam evaporation method, and their properties were investigated. In proportion to increase of substrate and annealing temperature, the conductivity of $SnO_2$ thin film was increased, but its optical transmission decreases because of increasing optical absorption of free electrons in the thin film. $SnO_2$/Si Solar cell characteristics were improved by annealing, but the solar cells was deteriorated by heat treatment above 500[.deg. C]. The optimal outputs of $SnO_2$/Si solar cell through above investigations were $V_{\var}$:350[mV], $J_{sc}$ ;16.53[mA/c $m^{2}$], FF;0.41, .eta.=4.74[%]

  • PDF

Applications of AGNPS model with rural watersheds having complex land use characteristics (복합 토지이용 특성의 농촌유역에 대한 농업비점원오염모형의 적용)

  • 조재필;박승우;강문성
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.353-358
    • /
    • 1998
  • GRASS-AGNPS model integrated with GIS was applied to rural watersheds having complex land use characteristics and evaluated for its applicability through calibration using observed data. The analyses of raster encoding accuracy and model behavior to runoff, sediment yields and nutrient loads for different cell-size showed that 150 m cell size indicated reasonable applicability of the model. Simulated runoff was in a good agreement with the observed data and simulated peak runoff rate was larger than the observed data. The sediment yield simulated by modified AGNPS model using irregular cell for forest area were less than that of the regular cell method. In predicting sediment yields, the result showed a different trend at each representative rural watershed. Nutrient loads simulated by the model were significantly different from the observed data.

  • PDF

Isolation and Characteristics of Novel Ammonia Oxidizing Bacteria Brevundimonas diminuta (암모니아산화세균 Brevundimonas diminuta의 분리 및 암모니아 산화 특성)

  • Kwon, Hyuk-Ku;Jung, Joon-Oh
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.4
    • /
    • pp.293-298
    • /
    • 2007
  • The microorganism for ammonia gas removal was isolated from composting product. This was identified as Brevundimonas diminuta by morphological, biochemical characteristics study and 16S rDNA sequence analysis. Optimal incubation temperature for cell growth and oxidizing ability of $NH_4-N$ was $30^{\circ}C$ and optimal initial pH was 7. Glucose affected the growth of cell and the removal of $NH4^+$. The growth rate of the isolates were increased when grown in the presence of 0.05-1%(w/v) glucose in the selective medium and lurker increases in glucose concentration to 2% caused significant decreases in the cell growth and oxidizing ability of $NH4^+$.

Sensory Quality of Rice-Wheat Bread (쌀가루 혼합빵의 관능적 품질)

  • 조숙자;정은희
    • Korean Journal of Rural Living Science
    • /
    • v.6 no.2
    • /
    • pp.91-97
    • /
    • 1995
  • The sensory quality and the baking property of blonds containing 10-50% of rice flour with wheat flour were analysed by QDA. As sensory characteristics, color, air cell size, air cell distribution, flavor, softness, chewiness and overall quality were evaluated. Bread could be made successfully even using up to 50% rice flour. The color, flavor, softness and chewiness were increased in rice-wheat bread especially using 10∼30% of rice flour, but in case of using 40∼50% of rice flour those characteristics were not significantly different from those of wheat bread. The size of air cell in 10∼30% rice-wheat bread was not significantly different but in 40∼50% rice-wheat bread it was increased. The distribution of air cell was more even in 10∼30% rice-wheat bread than in wheat bread, but not in 40∼50% rice-wheat bread. The overall quality of rice-wheat bread was shown to be better in 10∼30% rice-wheat bread than in wheat bread.

  • PDF

Current characteristics of Cu/NaCl electrolyte/Zn electrochemical cell (구리/NaCl 전해질/아연 전기화학전지의 전류특성)

  • Kim, Yong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1626-1631
    • /
    • 2010
  • The characteristics of electric current for the voltaic cell are important for electric power applications. In this paper, an electrical equivalent model consist of three resisters and a capacitance for the Cu/NaCl solution/Zn electrochemical cell is proposed. The capacitance which exists in the Zn electrode/electrolytic interface increased according to Zn electrode area, but cannot affect almost in electric current. Complex impedance plot was used to analysis the interface effect for Zn/electrolyte. This result shows that the interface is similar with the electric transmission line. The short current measurements were conducted to investigate the effects of hydrogen peroxide, the watery sulfuric acid and NaCl aqueous solution. As the hydrogen peroxide increased, the electric current increased because the hydrogen gas being converted with the water. Also electric current increased significantly with increase of the hydrogen ion with the watery sulfuric acid and increased with increase of $Na^+$ ion and $Cl^-$ion in the NaCl electrolyte.

A Study of Power Output Characteristics for the Magnesium Metal Fuel Cell (마그네슘 금속연료전지의 출력특성에 관한 연구)

  • Kim, Yong-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.212-217
    • /
    • 2014
  • The electric power output characteristics of magnesium fuel cell were investigated with regard to internal resistance. A equivalent circuit with the series-connected three internal resistance was introduced to analyze of the response to change of power. The power output analysis was employed in order to investigate the effect of internal resistances for the electrolyte concentration, air electrode area, Mg electrode area and distance between the electrodes. It was confirmed that internal resistance is generated by the electrolyte, air electrode and metal electrode, then those Internal resistances had a significant effect on the power output decrease. The power output was a maximum when the load resistance maches the internal resistance of the magnesium fuel cell. The fuel efficiency was only 50% at maximum power output. Higher fuel efficiency was achieved when the load resistance is greater than the internal resistance.

Study of Optimized Condition for Bend State in Polymer Stabilized Pi-cell with Compensation Films

  • Jeong, Seung-Yeon;Shin, Hyun-Ho;Bos, Phil;Shin, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.589-594
    • /
    • 2003
  • The pi-cell [1] is known as one of the candidates for a fast response time and a good viewing angle characteristics due to a self-compensated configuration and can be a replaceable mode instead of the current TN mode and the IPS mode for moving picture in future. This paper shows the optimized condition to maintain bend state instead of splay state, which is mortal demerit for good optical properties in a pi-cell, by using the polymer stabilized method [2]. The good electro-optical characteristics are also obtained by optimizing the various factors, which are monomer concentration in a LC, UV intensity, curing time, curing voltage, and curing temperature, and by using retardation film. We use a scanning electron microscope to study the structures of the polymer stabilized polymer network in a pi-cell as a key to figure out why bend state is occurred.

  • PDF

Design and Analyzing of Electrical Characteristics of 1,200 V Class Trench Si IGBT with Small Cell Pitch (1,200 V급 Trench Si IGBT의 설계 및 전기적인 특성 분석)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.105-108
    • /
    • 2020
  • In this study, experiments and simulations were conducted for a 1,200-V-class trench Si insulated-gate bipolar transistor (IGBT) with a small cell pitch below 2.5 ㎛. Presently, as a power device, the 1,200-V-class trench Si IGBT is used for automotives including electric vehicles, hybrid electric vehicles, and industrial motors. We obtained a breakdown voltage of 1,440 V, threshold of 6 V, and state voltage drop of 1.75 V. This device is superior to conventional IGBTs featuring a planar gate. To derive its electrical characteristics, we extracted design and process parameters. The cell pitch was 0.95 ㎛ and total wafer thickness was 140 ㎛ with a resistivity of 60 Ω·cm. We will apply these results to achieve fine-pitch gate power devices suitable for electrical automotive industries.