• 제목/요약/키워드: cell adhesion molecule

Search Result 228, Processing Time 0.027 seconds

Expression of Kainate Glutamate Receptors in Type II Cells in Taste Buds of Rats

  • Lee, Sang-Bok;Lee, Cil-Han;Cho, Young-Kyung;Chung, Ki-Myung;Kim, Kyung-Nyun
    • International Journal of Oral Biology
    • /
    • v.33 no.3
    • /
    • pp.83-89
    • /
    • 2008
  • Glutamate-induced cobalt uptake reveals non-NMDA glutamate receptors (GluRs) in rat taste bud cells. Previous studies suggest that glutamate-induced cobalt uptake in taste cells occurs mainly via kainate type GluRs. Cobaltstained cells were immunoreactive against GluR6 and KA1 subunits of GluRs. However, the functions of those type of receptors are not known yet. It is important question which types of taste cells are cobalt-stained when stimulated by glutamate and whether they express these kinds of GluRs. Circumvallate and foliate papilla of Sprague-Dawley rats (45-60 days old) were used. A cobalt-staining technique combined with immunohistochemistry against specific markers for taste bud cell types, such as blood group H antigen (BGH), $\alpha$-gustducin (Gus), or neural cell adhesion molecule (NCAM) was employed. We also performed double labeling of GluR6 or KA1 subunits of GluR with each specific marker for taste bud cell types. Lots of cobaltstained taste bud cells expressed Gus-like immunoreactivity, and subsets of the cobalt stained cells appeared NCAM- or BGH-like immunoreactivity. Stimulation with 1 mM glutamate significantly increased the number of cobaltstained cells in Gus-like immunoreactive cells, but not in NCAM- or BGH-like immunoreactive cells. In the double labeling experiments, GluR6 and KA1 subunits of GluRs were mainly expressed with Gus. These results suggest that kainate glutamate receptors preferentially expressed in type II taste bud cells in rat.

$PPAR{\gamma}$ Inhibits Inflammation through the Suppression of ERK1/2 Kinase Activity in Human Gingival Fibroblasts

  • Lee, Young-Hee;Kwak, Dong-Hoon;Kang, Min-Soo;Bhattarai, Govinda;Lee, Nan-Hee;Jhee, Eun-Chung;Yi, Ho-Keun
    • International Journal of Oral Biology
    • /
    • v.35 no.1
    • /
    • pp.27-33
    • /
    • 2010
  • Periodontal disease is a major oral disorder and comprises a group of infections that lead to inflammation of the gingiva and the destruction of periodontal tissues. $PPAR{\gamma}$ plays an important role in the regulation of several metabolic pathways and has recently been implicated in inflammatory response pathways. However, its effects on periodontal inflammation have yet to be clarified. In our current study, we evaluated the anti-inflammatory effects of $PPAR{\gamma}$ on periodontal disease. Human gingival fibroblasts (HGFs) treated with lipopolysaccharide (LPS) showed high levels of intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), matrix metalloproteinase-2 (MMP-2), and -9 (MMP-9). Moreover, these cells also showed upregulated activities for extracellular signal regulated kinase (ERK1/2), inducible nitric oxide synthase (iNOS) and cyclooxygnase-2. However, cells treated with Ad/$PPAR{\gamma}$ and rosiglitazone in same culture system showed reduced ICAM-1, VCAM-1, MMP-2, -9 and COX-2. Finally, the anti-inflammatory effects of $PPAR{\gamma}$ appear to be mediated via the suppression of the ERK1/2 pathway and consequent inhibition of NF-kB translocation. Our present findings thus suggest that $PPAR{\gamma}$ indeed has a pivotal role in gingival inflammation and may be a putative molecular target for future therapeutic strategies to control chronic periodontal disease.

Inhibitory Effect of Combination with Korean Red Gnseng and Morus Alba in High Fructose-induced Vascular Inflammation and Steatohepatitis (고과당식이 투여 랫드모델에서 홍삼과 상엽 복합투여에 대한 혈관염증 및 지방간염 억제 효과)

  • Lee, Yun Jung;Yoon, Jung Joo;Lee, So Min;Kho, Min Chul;Kim, Hye Yoom;Ahn, You Mee;Kho, Joung Hyun;Lee, Kee Byoung;Lee, Ho Sub;Choi, Kyung Min;Kwon, Tae Oh;Kang, Dae Gill
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.5
    • /
    • pp.724-731
    • /
    • 2012
  • This study was designed to elucidate whether combination with Korean red ginseng and Morus alba L. (MPM), traditional treatment for diabetes, ameliorates on high fructose-induced steatohepatitis and vascular inflammation. Animals were divided into four groups; Control receiving tap water, fructose-fed, rosiglitazone-treated fructose-fed rats, and MPM-treated fructose-fed rats both receiving supplemented with 60% fructose (n=10). The MPM or rosiglitazone groups initially received a high-fructose diet alone for 8 weeks, with supplementation with MPM or rosiglitazone, peroxisome proliferators-activated receptor gamma ($PPAR{\gamma}$) agonist, occurring during the final 6 weeks. Treatment with MPM significantly prevented the increase in c-reactive protein (CRP) levels in the high fructose group. MPM suppressed high fructose diet-induced vascular inflammation marker expression such as intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. MPM also reduced intima/media thickness of thoracic aorta. Histologic observation and oil red O staining demonstrated hepatic tissue damage and lipid accumulation were severe in high fructose group. Treatment with MPM ameliorated hepatic tissue morphology with minimized steatosis. In addition, MPM attenuated hepatitis by inhibition of monocyte chemoattractant protein-1 (MCP-1) expression. MPM-fed group showed lower serum GOT and GPT levels comparing with high fructose group. MPM and rosiglitazone (positive control) significantly decreased the size of epididymal adipocytes. Taken together, the administration of MPM inhibited high fructose-induced steatohepatitis and vascular inflammation. These results suggested that MPM is useful in the prevention or treatment of metabolic syndrome-related disorders such as fatty acid metabolism and vascular homeostasis.

The Effects of Diesel Exhaust Particulates and Particulate Matters on the ICAM-1 and VCAM-1 Expression in the Lung of Asthma-incuced Mouse (디젤분진 및 미세분진이 천식마우스의 폐조직에서 ICAM-1과 VCAM-1의 발현에 미치는 효과)

  • Li, Tian-Zhu;Lee, Soo-Jin;Jang, Yang-Ho;Lee, Jeong-Hak;Park, Se-Jong;Park, Jun-Hong;Chang, Byung-Joon;Lee, Jong-Hwan;Choe, Nong-Hoon
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.396-401
    • /
    • 2007
  • This research investigated whether exposure of diesel exhaust particulate (DEP) and particulate metter (PM) effect on intercellular. adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression in asthma-induced Balb/c and IL-10 knock out (KO) mouse. Mouse was sensitized with intraperitoneal injection with ovalbumin, followed by challenges with intranasal ovalbumin. After induction of asthma mouse placed in the inhalation chamber and exposed to DEP and PM (10 $mg/m^3$). The evidences of pulmonary inflammation were assessed by immunohistochemical stain and westen blot against ICAM-1 and VCAM-1 in the lung tissue. In the immunohistochemical stain, positive reactions for ICAM-1 and VCAM-1 were much stronger in asthma-induced groups and asthma-induced group with DEP or PM than control groups. Although mild positive reactions were appeared in asthma-induced IL-10 KO mice groups, positive reactions were very strong in the asthma-induced group with DEP or PM. In Western blot, expression of VCAM-1 was increased in asthma-induced group with DEP or PM than asthma-induced groups. In the IL-10 KO mouse, ICAM-1 and VCAM-1 expression were increased in asthma-induced group with DEP or PM than asthma-induced groups. DEP and PM exposure have additive effects on the aggravation of inflammatory signs in the asthma-induced murine model. These results suggest that inhalation of DEP and PM in asthmatic patients may aggravate clinical symptoms.

Rg3-enriched Korean Red Ginseng extract inhibits blood-brain barrier disruption in an animal model of multiple sclerosis by modulating expression of NADPH oxidase 2 and 4

  • Lee, Min Jung;Choi, Jong Hee;Oh, Jinhee;Lee, Young Hyun;In, Jun-Gyo;Chang, Byung-Joon;Nah, Seung-Yeol;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.433-441
    • /
    • 2021
  • Background: Multiple sclerosis (MS) and its animal model, the experimental autoimmune encephalomyelitis (EAE), are primarily characterized as dysfunction of the blood-brain barrier (BBB). Ginsenoside-Rg3-enriched Korean Red Ginseng extract (Rg3-KRGE) is known to exert neuroprotective, anti-inflammatory, and anti-oxidative effects on neurological disorders. However, effects of Rg3-KRGE in EAE remain unclear. Methods: Here, we investigated whether Rg3-KRGE may improve the symptoms and pathological features of myelin oligodendroglial glycoprotein (MOG)35-55 peptide - induced chronic EAE mice through improving the integrity of the BBB. Results: Rg3-KRGE decreased EAE score and spinal demyelination. Rg3-KRGE inhibited Evan's blue dye leakage in spinal cord, suppressed increases of adhesion molecule platelet endothelial cell adhesion molecule-1, extracellular matrix proteins fibronection, and matrix metallopeptidase-9, and prevented decreases of tight junction proteins zonula occludens-1, claudin-3, and claudin-5 in spinal cord following EAE induction. Rg3-KRGE repressed increases of proinflammatory transcripts cyclooxygenase-2, inducible nitric oxide synthase, interleukin (IL)-1 beta, IL-6, and tumor necrosis factor-alpha, but enhanced expression levels of anti-inflammatory transcripts arginase-1 and IL-10 in the spinal cord following EAE induction. Rg3-KRGE inhibited the expression of oxidative stress markers (MitoSOX and 4-hydroxynonenal), the enhancement of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and NOX4, and NADPH activity in the spinal cord of chronic EAE mice. Furthermore, apocynin, a NOX inhibitor, mimicked beneficial effects of Rg3-KRGE in chronic EAE mice. Conclusion: Our findings suggest that Rg3-KRGE might alleviate behavioral symptoms and pathological features of MS by improving BBB integrity through modulation of NOX2/4 expression.

Genes profile related to modulation of natural killer cell activity induced by electroacupuncture (전침이 자연살해세포 활성에 미치는 유전자 발현 profile에 대한 연구)

  • Choi, Gi-soon;No, Sam-woong;Oh, Sang-deog;Bae, Hyun-su;Ahn, Hyun-jong;Ha, Yoon-mun;Kim, Kwang-ho;Min, Byung-il
    • Journal of Acupuncture Research
    • /
    • v.19 no.6
    • /
    • pp.111-124
    • /
    • 2002
  • A line of study reported that electroacupuncture(EA) modulate natural killer cell(NK Cell) activities. One report suggested that EA enhanced splenic interferon-gamma($IFN-{\gamma}$), interleukin-2(IL-2), and NK cell activity in Sprague-Dawley rats. Another study suggested that $IFN-{\gamma}$ mediates the up-regulation of NK cell activity, and endogenous ${\beta}$-endorphin secretion also play a role in the up-regulation of NK cell activity induced by EA stimulation. In order to better understand the molecular regulation underlying the activation of NK cell induced by EA, we have utilized cDNA microarray to elucidate how EA alters program of gene expression of spleen in rats. First, we divided three groups, group I was EA group treated with EA in restriction holder, group II was sham group with only holder stress, and last group III was control group with no treatment. We measured NK cell activity after EA stimulation three times for 2 days using $^{51}Cr$ release assay. Second, Biotin-labeled cDNA probes synthesized from EA group and sham group, were competitively hybridized to the microarray that contained variable genes. Such high-throughput screening has identified a number of EA-responsive gene candidates. Of these, we found that EA induced a subset of genes of genes that functionally could modulatory effects on NK cell activity. Genes(vascular cell adhesion molecule-1, protein-tyrosine kinase, CD94 mRNA) related to boost NK cell activity, were increased by EA And, genes(protein-tyrosine-phospatase mRNA, protein-tyrosine phosphatase(SHP-1) mRNA) related to inhibit NK cell activity, were decreased by EA. These EA-responsive genes may provide key insights from which to understand mechanisms of activation of NK cell induced by EA.

  • PDF

Circulating Aneuploid Cells Detected in the Blood of Patients with Infectious Lung Diseases

  • Kim, Hongsun;Cho, Jong Ho;Sonn, Chung-Hee;Kim, Jae-Won;Choi, Yul;Lee, Jinseon;Kim, Jhingook
    • Journal of Chest Surgery
    • /
    • v.50 no.2
    • /
    • pp.126-129
    • /
    • 2017
  • The identification of circulating tumor cells (CTCs) is clinically important for diagnosing cancer. We have previously developed a size-based filtration platform followed by epithelial cell adhesion molecule immunofluorescence staining for detecting CTCs. To characterize CTCs independently of cell surface protein expression, we incorporated a chromosomal fluorescence in situ hybridization (FISH) assay to detect abnormal copy numbers of chromosomes in cells collected from peripheral blood samples by the size-based filtration platform. Aneuploid cells were detected in the peripheral blood of patients with lung cancer. Unexpectedly, aneuploid cells were also detected in the control group, which consisted of peripheral blood samples from patients with benign lung diseases, such as empyema necessitatis and non-tuberculous mycobacterial lung disease. These findings suggest that chromosomal abnormalities are observed not only in tumor cells, but also in benign infectious diseases. Thus, our findings present new considerations and bring into light the possibility of false positives when using FISH for cancer diagnosis.

Immune Responses to Plant-Derived Recombinant Colorectal Cancer Glycoprotein EpCAM-FcK Fusion Protein in Mice

  • Lim, Chae-Yeon;Kim, Deuk-Su;Kang, Yangjoo;Lee, Ye-Rin;Kim, Kibum;Kim, Do Sun;Kim, Moon-Soo;Ko, Kisung
    • Biomolecules & Therapeutics
    • /
    • v.30 no.6
    • /
    • pp.546-552
    • /
    • 2022
  • Epidermal cell adhesion molecule (EpCAM) is a tumor-associated antigen (TAA), which has been considered as a cancer vaccine candidate. The EpCAM protein fused to the fragment crystallizable region of immunoglobulin G (IgG) tagged with KDEL endoplasmic reticulum (ER) retention signal (EpCAM-FcK) has been successfully expressed in transgenic tobacco (Nicotiana tabacum cv. Xanthi) and purified from the plant leaf. In this study, we investigated the ability of the plant-derived EpCAM-FcK (EpCAM-FcKP) to elicit an immune response in vivo. The animal group injected with the EpCAM-FcKP showed a higher differentiated germinal center (GC) B cell population (~9%) compared with the animal group injected with the recombinant rhEpCAM-Fc chimera (EpCAM-FcM). The animal group injected with EpCAM-FcKP (~42%) had more differentiated T follicular helper cells (Tfh) than the animal group injected with EpCAM-FcM (~7%). This study demonstrated that the plant-derived EpCAM-FcK fusion antigenic protein induced a humoral immune response in mice.

Cirsium japonicum var. Maackii Extract Suppress VCAM-1 and ICAM-1 Expression in TNF-α-treated Human Vascular Endothelial Cells by Blocking NF-κB Activation (인간 혈관 내피세포에서 NF-κB 억제를 통한 엉겅퀴 추출물의 VCAM-1 및 ICAM-1 발현 억제효과)

  • Jae Young Shin;Byoung Ok Cho;Ji Hyeon Park;Eun Seo Kang;Jae Suk Sim;Dong Jun Sim;Seon Il Jang
    • Korean Journal of Pharmacognosy
    • /
    • v.54 no.1
    • /
    • pp.21-26
    • /
    • 2023
  • Cirsium japonicum var. maackii is a traditional Korean wild perennial herb used to treat blood circulation, high blood pressure, inflammation, diabetes, and kidney damage. However, it is not known whether C. japonicum var. maackii directly improves endothelial dysfunction. In this study, the effect of C. japonicum var. maackii (CJE) on tumor necrosis factor (TNF)-α-induced vascular inflammation was investigated in vitro using human umbilical vein endothelial cells (HUVEC). As a result, CJE inhibited the production of VCAM-1, ICAM-1 and ROS increased by TNF-α in HUVECs. In addition, treatment with CJE attenuated IκB phosphorylation and translocation of NF-κB to the nucleus. These results suggest that CJE can suppress TNFα-induced adhesion molecule expression by blocking NF-κB signaling and inhibiting ROS generation. The results of this study show that CJE has the potential to be used to treat and prevent inflammation associated with endothelial cell damage.

Peanut sprout tea extract inhibits lung metastasis of 4T1 murine mammary carcinoma cells by suppressing the crosstalk between cancer cells and macrophages in BALB/c mice

  • Jae In Jung;Hyun Sook Lee;Jaehak Lee;Eun Ji Kim
    • Nutrition Research and Practice
    • /
    • v.17 no.5
    • /
    • pp.917-933
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: As peanuts germinate, the content of the components beneficial to health, such as resveratrol, increases within the peanut sprout. This study examined whether the ethanol extract of peanut sprout tea (PSTE) inhibits breast cancer growth and metastasis. MATERIALS/METHODS: After orthotopically injecting 4T1 cells into BALB/c mice to induce breast cancer, 0, 30, or 60 mg/kg body weight/day of PSTE was administered orally. Angiogenesis-related protein expression in the tumors and the degree of metastasis were analyzed. 4T1 and RAW 264.7 cells were co-cultured, and reverse transcription polymerase chain reaction was performed to measure the crosstalk between breast cancer cells and macrophages. RESULTS: PSTE reduced tumor growth and lung metastasis. In particular, PSTE decreased matrix metalloproteinase-9, platelet endothelial cell adhesion molecule-1, vascular endothelial growth factor-A, F4/80, CD11c, macrophage mannose receptor, macrophage colony-stimulating factor, and monocyte chemoattractant protein 1 expression in the tumors. Moreover, PSTE prevented 4T1 cell migration, invasion, and macrophage activity in RAW 264.7 cells. PSTE inhibited the crosstalk between 4T1 cells and RAW 264.7 cells and promoted the macrophage M1 subtype while inhibiting the M2 subtype. CONCLUSIONS: These results suggest that PSTE blocks breast cancer growth and metastasis to the lungs. This may be because the PSTE treatment inhibits the crosstalk between mammary cancer cells and macrophages and inhibits the differentiation of macrophages into the M2 subtype.