• Title/Summary/Keyword: ceiling effect

Search Result 164, Processing Time 0.025 seconds

Comparison of the PMV and ADPI according to Adapted Height of Ceiling-type System Air-conditioner in Large space (천정형 정풍량 시스템에어컨의 적용높이에 따른 실내온열환경 특성)

  • Sung, Sang-Chul;Kim, Hyouk-Soon;Chin, Sim-Won;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.590-595
    • /
    • 2009
  • PMV and ADPI were numerically investigated in a large space of various ceiling height with air-conditioning systems of two type. The numerical results showed that it is small that the growth of cooling load according to ceiling height rise in a large space without windows. In case of system air-conditioner of duct type embedded in the ceiling, the air mixing effect in indoor is superior to a case installed 4way cassette type in it. For controling thermal comfort at indoor, a system air-conditioner of duct type embedded in the ceiling is little influenced according to ceiling height rise in a large space considered.

  • PDF

A Study on Algorithm for Reducing Communication Error Rate in Special Network (특수망에서 통신 에러율을 줄이기 위한 알고리즘에 관한 연구)

  • Son, Dong-Cheul
    • Journal of Digital Convergence
    • /
    • v.14 no.11
    • /
    • pp.325-331
    • /
    • 2016
  • The purpose of this study is to analyze the effect of the glass ceiling induction factors on the improvement of the job Commitment on the glass ceiling perception and to analyze the effect of the organizational Commitment on the influence of the local medical institute and private medical institute employees. As a research method, structural equation model analysis was carried out to investigate the influence relationship of each factor. In particular, multiple group analysis was performed to analyze the difference of influence relations between public and private medical personnel, respectively. Result: First, empirical studies on the effect of the glass ceiling inducing factors on job Commitment showed that job Commitment was influenced by stereotype and organizational culture, and the magnitude of the influence was different. Second, the employees of the room medical center were influenced by perceived promotion, job placement, education and training, reward, and job satisfaction. Third, in the hypothesis that job Commitment will be affected by the perception of glass ceiling, only the workers of the private medical center showed significant results. Based on the results of this study, it will be necessary to plan policies to improve the perception of the glass ceiling phenomenon and improve its status in order to improve the personnel and system with which women workers in the medical field can enter more senior management positions.

Installed Spacing and Reponse Time Index of Heat Detection Devices (열감지장치의 응답시간지수와 경계구역)

  • 권오승;이복영;김동석
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.72-75
    • /
    • 1996
  • The objectives of this paper investigate the effect of installed spacing on the activation of spot type heat detection devices. The flow of hot gases under a ceiling resulting from the impingement of a fire plume activates heat detectors and sprinklers. Local temperature and velocity in this ceiling jet are usually expressed with the function of a ceiling height, the distance from a fire location and the heat release rate of fire. And detectors having different. RTI respond in different ways to the same temperature and velocity of ceiling jet. Thus great care should be taken to decide installed spacing of heat detection devices by considering above effects.

  • PDF

Triaxial Shake Table Test about Seismic Performance of Ceiling System with Gypsum Panels (석고 패널이 부착된 천장 시스템의 내진성능 평가를 위한 3축 진동실험)

  • Park, Hae-Yong;Jeon, Bub-Gyu;Kim, Jae-Bong;Gim, Min-Uk
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.143-153
    • /
    • 2019
  • In this study, a full scale 3-axes shake table test for M-bar and T-bar type ceilings commonly used in the country was conducted. Through damage inspection during the test, seismic performance of ceilings according to variables, such as clearance between wall mold and ceiling as well as existence of facilities, was evaluated. A test frame consisted of square hollow section members was used for the shake table test. The experimental method was performed as a fragility test using required response spectrum described in ICC-ES AC156. In the case of architectural nonstructural component that contain ceilings, it mainly is evaluated the performance by post-test visual inspection. For the evaluation of seismic performance of ceilings, this study classified and defined damaged items for targeted ceiling system referring to illustrative damage according to nonstructural performance levels accordance with ASCE 41 and previous studies. And proposed illustrative damage items classification was utilized to compare the degree of the damage according to experimental variables. The experiment results confirmed that differences in boundary conditions due to the clearance at wall mold and the installation of facilities had a significant effect on the seismic performance of the ceiling.

Experiment Evaluation for the Heavy-weight Impact Sound of Dry Double-floor System - Effect of Rubber Hardness and Ceiling Structure - (건식이중바닥구조의 중량충격음에 대한 실험적 평가 - 지지구조 및 천장구조 구성에 따른 영향 -)

  • Yeon, Junoh;Kim, Kyoungwoo;Choi, Hyunjuong;Yang, Kwanseop;Kim, Kyungho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.34-40
    • /
    • 2013
  • The 1st assessment(performance test) was applied to assure the floor impact sound performance for developing the dry double-floor with the change of rubber hardness of the upper panel's support and the ceiling structure of the sub-floor. Depends on the change of the rubber hardness in sub-structure, the heavy-weight sound impact value is improved up to 3 dB, and the light-weight sound impact value is moved up to 21 dB, comparing with the bare-slab. Also, the improved value for the floor impact sound conjugating with the sub-floor's ceiling was 5 dB. Based on this result, the 2nd assessment(performance test) was made the state that the rubber hardness of the sub-floor support was ranged between 50 and 70 for considering the stability of walking patients. In addition to this process, the assessment was carried out with a variety of ceiling structure applied to the dry double-floor structure with the air flow system on the sub-floor's ceiling. The result for the 2nd assessment proved that TYPEII-3 had the better sound reduction performance in the heavy-weight impact sound test than other types, and also for the light-weight impact sound TYPEII-3 had the 29 dB sound reduction performance overall. Henceforth, based on the result the research for the sound reduction performance from the floor impact sound shall be ongoing process as well as the development of a double-dry floor and a sound reduction ceiling to suitable on the field.

The Effect of Stage Ceiling Height on the Acoustic Characteristics of Concert Halls (콘서트홀의 무대 천장높이 변화에 의한 객석음향의 영향)

  • Shin Dong-Jae;Jeon Jin-Yong;Seo Hyung-Gyoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.21-28
    • /
    • 2005
  • In this Paper, the effect of stage ceiling height on the acoustic characteristics of rectangular concert halls are investigated. To find out the acoustic properties of audience area, A simple Boston Symphony Hall(BSH) model which is typically rectangular shaped was applied for computer simulation. A newly built rectangular concert hall with 400 seats was also chosen for a scale model $(1.2m{\times}0.68m{\times}0.31m)$ study and its computer simulation varing the stage ceiling height and the volume. The results show that RT increased as the stage ceiling was lowered and the difference rate of RT by its variance is from -0.09 to -0.06[sec/m].

Effect of Working Posture on the Productivity and Perceived Discomfort while Drilling on the Ceiling

  • Yoon, Tae-Lim;Yoon, Jangwhon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.549-555
    • /
    • 2013
  • Objective: The purpose of this study was to compare the performance of drilling on the ceiling in three different postures (standing, standing on the ladder and supine on the height adjusted board) and the subjective responses of perceived discomfort after the drilling. Background: Overhead work has been identified as a major occupational risk factor and has been a main research subject. Method: Ten young participants drilled 20 holes at the pre-marked places on the ceiling in three different postures. The drilling duration, resting and drilling heart rate were measured. The levels of perceived discomfort at neck, shoulder, elbow, hand and overall body were asked at the end of each task. Results: The working posture affected the heart rate after the drilling. Perceived discomfort in the neck decreased significantly in supine compared to drilling on the ladder. Conclusion: The results of this study suggest that drilling in supine can be an alternative way to reduce the drilling heart rate and the level of perceived discomfort in the neck without sacrificing the productivity. Application: The results of this study would be considered when drilling on the ceiling is required in construction workers.

Development of Simple Structure Microwave Sensor (구조가 간단한 마이크로파 센서 개발)

  • Jung, Soon-Won;Lee, Jae-Jin;Koo, Kyung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.270-274
    • /
    • 2008
  • The microwave sensor in which the sensitivity was excellent and a structure is simple was developed and it manufactured. And the sensing range that uses the developed product was confirmed. When the developed microwave sensor was set up in the ceiling of a building, we confirmed that the amplitude of the sensitive area increased as the tilting angle was enlarged. The sensitive area became a greatest in case the tilting angle was 65 degree. According to the height of a ceiling, because the sensing range is determined, in case of using in the building in which the height of a ceiling is enough secured it is determined to secure the more wide sensitive area. Moreover, the configuration of the circuit having the simple structure makes the miniaturization of a product, and the light weight possible. It is considered to have the price competitive power which it reduces the manufacturing cost, is sufficient.

Thermal Environment Analysis by the Diffusion Direction with Ceiling Type Air Conditioner of the Classroom (학교 교실의 천장형 에어컨 토출각도에 따른 온열환경 해석)

  • AHN, Chul-Lin;KIM, Dong-Gyue;KUM, Jong-Soo;PARK, Hee-Ouk;CHUNG, Yong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.17 no.2
    • /
    • pp.145-154
    • /
    • 2005
  • It is necessary to develop new air-conditioning method which can be satisfied individual separated space and request of occupants. The indoor thermal environment and flow field are investigated both experimentally and numerically. This study concentrated on analysis of indoor thermal environment by diffusion direction of ceiling type air conditioner of the classroom. The velocity and temperature distribution of air in the room calculated by 3-dimensional method, which include the effect of insulation of the building and outdoor state. This analysis shows that optimum diffusion direction is $30^{\circ}$ to increase thermal comfort in winter and optimum diffusion direction is $15^{\circ}$ to increase thermal comfort in summer.

Seismic interactions between suspended ceilings and nonstructural partition walls

  • Huang, Wen-Chun;McClure, Ghyslaine;Hussainzada, Nahidah
    • Coupled systems mechanics
    • /
    • v.2 no.4
    • /
    • pp.329-348
    • /
    • 2013
  • This study aims at observing the coupling behaviours between suspended ceilings and partition walls in terms of their global seismic performance using full-scale shake table tests. The suspended ceilings with planar dimensions of $6.0m{\times}3.6m$ were tested with two types of panels: acoustic lay-in and metal clip-on panels. They were further categorized as seismic-braced, seismic-unbraced, and non-seismic installations. Also, two configurations of 2.7 m high partition wall specimens, with C-shape and I-shape in the plane layouts, were tested. In total, seven ceiling-partition-coupling (CPC) specimens were tested utilizing a unidirectional seismic simulator. The test results indicate that the damage patterns of the tested CPC systems included failure of the ceiling grids, shearing-off of the wall top railing, and, most destructively, numerous partial detachments and falling of the ceiling panels. The loss of panels was mostly concentrated near the center of the tested partition wall. The testing results also confirmed that the failure mode of the non-seismic CPC systems was brittle: The whole system would collapse suddenly all at once when the magnitude of the inputs hit the capacity threshold, rather than displaying progressive damage. Overall, the seismic capacity of the unbraced and braced CPC systems could be up to 1.23 g and 2.67 g, respectively; these accelerations were both achieved at the base of the partition wall. Nonetheless, for practical applications, it is noteworthy that the three-dimensional nature of seismic excitations and the size effect of the ceiling area are parameters that exacerbate the CPC's seismic response so that their actual capacity may be dramatically decreased, leading to important losses even in moderate seismic events.