• 제목/요약/키워드: cdk

검색결과 343건 처리시간 0.027초

Tenovin-1 Induces Senescence and Decreases Wound-Healing Activity in Cultured Rat Primary Astrocytes

  • Bang, Minji;Ryu, Onjeon;Kim, Do Gyeong;Mabunga, Darine Froy;Cho, Kyu Suk;Kim, Yujeong;Han, Seol-Heui;Kwon, Kyoung Ja;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • 제27권3호
    • /
    • pp.283-289
    • /
    • 2019
  • Brain aging induces neuropsychological changes, such as decreased memory capacity, language ability, and attention; and is also associated with neurodegenerative diseases. However, most of the studies on brain aging are focused on neurons, while senescence in astrocytes has received less attention. Astrocytes constitute the majority of cell types in the brain and perform various functions in the brain such as supporting brain structures, regulating blood-brain barrier permeability, transmitter uptake and regulation, and immunity modulation. Recent studies have shown that SIRT1 and SIRT2 play certain roles in cellular senescence in peripheral systems. Both SIRT1 and SIRT2 inhibitors delay tumor growth in vivo without significant general toxicity. In this study, we investigated the role of tenovin-1, an inhibitor of SIRT1 and SIRT2, on rat primary astrocytes where we observed senescence and other functional changes. Cellular senescence usually is characterized by irreversible cell cycle arrest and induces senescence- associated ${\beta}$-galactosidase (SA-${\beta}$-gal) activity. Tenovin-1-treated astrocytes showed increased SA-${\beta}$-gal-positive cell number, senescence-associated secretory phenotypes, including IL-6 and IL-$1{\beta}$, and cell cycle-related proteins like phospho-histone H3 and CDK2. Along with the molecular changes, tenovin-1 impaired the wound-healing activity of cultured primary astrocytes. These data suggest that tenovin-1 can induce cellular senescence in astrocytes possibly by inhibiting SIRT1 and SIRT2, which may play particular roles in brain aging and neurodegenerative conditions.

레몬그라스 에탄올 추출물의 3T3-L1 지방세포 분화 억제효과 (Inhibitory Effect of Cymbopogon Citratus Ethanol Extracts on Adipogenesis in 3T3-L1 Preadipocytes)

  • 조용석;주성민;황금희;김민숙;김광상;전병훈
    • 동의생리병리학회지
    • /
    • 제33권1호
    • /
    • pp.17-24
    • /
    • 2019
  • Cymbopogon citratus, commonly know as lemongrass, prossesses strong antioxidant, anti-tumor and anti-inflammatory properties. Howerver, its anti-obesity activity remains to be elucidated. This study investigated the effect of ethanol extract of Cymbopogon citratus on adipogenesis, and its underlying mechanism, in 3T3-L1 preadipocytes. The results demonstrated that ethanol extracts of Cymbopogon citratus effectively suppressed intercellular lipid accumulation at non-toxic concentrations, and was associated with the down-regulation of adipocyte-specific transcription factors, including $C/EBP{\alpha}$ and $PPAR{\gamma}$, and phosphorylation of $AMPK{\alpha}$. Furthermore, ethanol extracts of Cymbopogon citratus increased p21 and p21 expression, while the expression of CDK2, cyclin A and cyclin B1 was reduced. As a result, ethanol extracts of Cymbopogon citratus seems to induce G0/G1 cell cycle arrest of 3T3-L1 cells. On the other hand, ERK and Akt signaling pathways were not involved in anti-adipogenesis by ethanol extracts of Cymbopogon citratus. Taken together, theses results suggest that ethanol extracts of Cymbopogon citratus inhibits adipocyte differentiation in 3T3-L1 cells and can be used as a safe and efficient natural substance to manage anti-obesity.

PRR11 and SKA2 gene pair is overexpressed and regulated by p53 in breast cancer

  • Wang, Yitao;Zhang, Chunxue;Mai, Li;Niu, Yulong;Wang, Yingxiong;Bu, Youquan
    • BMB Reports
    • /
    • 제52권2호
    • /
    • pp.157-162
    • /
    • 2019
  • Our previous study found that two novel cancer-related genes, PRR11 and SKA2, constituted a classic gene pair that was regulated by p53 and NF-Y in lung cancer. However, their role and regulatory mechanism in breast cancer remain elusive. In this study, we found that the expression levels of PRR11 and SKA2 were upregulated and have a negative prognotic value in breast cancer. Loss-of-function experiments showed that RNAi-mediated knockdown of PRR11 and/or SKA2 inhibited proliferation, migration, and invasion of breast cancer cells. Mechanistic experiments revealed that knockdown of PRR11 and/or SKA2 caused dysregulation of several downstream genes, including CDK6, TPM3, and USP12, etc. Luciferase reporter assays demonstrated that wild type p53 significantly repressed the PRR11-SKA2 bidirectional promoter activity, but not NF-Y. Interestingly, NF-Y was only essential for and correlated with the expression of PRR11, but not SKA2. Consistently, adriamycin-induced (ADR) activation of endogenous p53 also caused significant repression of the PRR11 and SKA2 gene pair expression. Notably, breast cancer patients with lower expression levels of either PRR11 or SKA2, along with wild type p53, exhibited better disease-free survival compared to others with p53 mutations and/or higher expression levels of either PRR11 or SKA2. Collectively, our study indicates that the PRR11 and SKA2 transcription unit might be an oncogenic contributor and might serve as a novel diagnostic and therapeutic target in breast cancer.

Silence of LncRNA GAS5 Protects Cardiomyocytes H9c2 against Hypoxic Injury via Sponging miR-142-5p

  • Du, Jian;Yang, Si-Tong;Liu, Jia;Zhang, Ke-Xin;Leng, Ji-Yan
    • Molecules and Cells
    • /
    • 제42권5호
    • /
    • pp.397-405
    • /
    • 2019
  • The regulatory role of long noncoding RNA (lncRNA) growth arrest-specific transcript 5 (GAS5) in both cancerous and noncancerous cells have been widely reported. This study aimed to evaluate the role of lncRNA GAS5 in heart failure caused by myocardial infarction. We reported that silence of lncRNA GAS5 attenuated hypoxia-triggered cell death, as cell viability was increased and apoptosis rate was decreased. This phenomenon was coupled with the down-regulated expression of p53, Bax and cleaved caspase-3, as well as the up-regulated expression of CyclinD1, CDK4 and Bcl-2. At the meantime, the expression of four heart failure-related miR-NAs was altered when lncRNA GAS5 was silenced (miR-21 and miR-142-5p were up-regulated; miR-30b and miR-93 were down-regulated). RNA immunoprecipitation assay results showed that lncRNA GAS5 worked as a molecular sponge for miR-142-5p. More interestingly, the protective actions of lncRNA GAS5 silence on hypoxia-stimulated cells were attenuated by miR-142-5p suppression. Besides, TP53INP1 was a target gene for miR-142-5p. Silence of lncRNA GAS5 promoted the activation of PI3K/AKT and MEK/ERK signaling pathways in a miR-142-5p-dependent manner. Collectively, this study demonstrated that silence of lncRNA GAS5 protected H9c2 cells against hypoxia-induced injury possibly via sponging miR-142-5p, functionally releasing TP53INP1 mRNA transcripts that are normally targeted by miR-142-5p.

Sevoflurane Postconditioning Reduces Hypoxia/Reoxygenation Injury in Cardiomyocytes via Upregulation of Heat Shock Protein 70

  • Zhang, Jun;Wang, Haiyan;Sun, Xizhi
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권8호
    • /
    • pp.1069-1078
    • /
    • 2021
  • Sevoflurane postconditioning (SPostC) has been proved effective in cardioprotection against myocardial ischemia/reperfusion injury. It was also reported that heat shock protein 70 (HSP70) could be induced by sevoflurane, which played a crucial role in hypoxic/reoxygenation (HR) injury of cardiomyocytes. However, the mechanism by which sevoflurane protects cardiomyocytes via HSP70 is still not understood. Here, we aimed to investigate the related mechanisms of SPostC inducing HSP70 expression to reduce the HR injury of cardiomyocytes. After the HR cardiomyocytes model was established, the cells transfected with siRNA for HSP70 (siHSP70) or not were treated with sevoflurane during reoxygenation. The lactate dehydrogenase (LDH) level was detected by colorimetry while cell viability and apoptosis were detected by MTT and flow cytometry. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blotting were used to detect HSP70, apoptosis-, cell cycle-associated factors, iNOS, and Cox-2 expressions. Enzyme-linked immuno sorbent assay (ELISA) was used to measure malondialdehyde (MDA) and superoxide dismutase (SOD). SPostC decreased apoptosis, cell injury, oxidative stress and inflammation and increased viability of HR-induced cardiomyocytes. In addition, SPostC downregulated Bax and cleaved caspase-3 levels, while SPostC upregulated Bcl-2, CDK-4, Cyclin D1, and HSP70 levels. SiHSP70 had the opposite effect that SPostC had on HR-induced cardiomyocytes. Moreover, siHSP70 further reversed the effect of SPostC on apoptosis, cell injury, oxidative stress, inflammation, viability and the expressions of HSP70, apoptosis-, and cell cycle-associated factors in HR-induced cardiomyocytes. In conclusion, this study demonstrates that SPostC can reduce the HR injury of cardiomyocytes by inducing HSP70 expression.

Glycogen Synthase Kinase-3 Interaction Domain Enhances Phosphorylation of SARS-CoV-2 Nucleocapsid Protein

  • Jun Seop, Yun;Hyeeun, Song;Nam Hee, Kim;So Young, Cha;Kyu Ho, Hwang;Jae Eun, Lee;Cheol-Hee, Jeong;Sang Hyun, Song;Seonghun, Kim;Eunae Sandra, Cho;Hyun Sil, Kim;Jong In, Yook
    • Molecules and Cells
    • /
    • 제45권12호
    • /
    • pp.911-922
    • /
    • 2022
  • A structural protein of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), nucleocapsid (N) protein is phosphorylated by glycogen synthase kinase (GSK)-3 on the serine/arginine (SR) rich motif located in disordered regions. Although phosphorylation by GSK-3β constitutes a critical event for viral replication, the molecular mechanism underlying N phosphorylation is not well understood. In this study, we found the putative alpha-helix L/FxxxL/AxxRL motif known as the GSK-3 interacting domain (GID), found in many endogenous GSK-3β binding proteins, such as Axins, FRATs, WWOX, and GSKIP. Indeed, N interacts with GSK-3β similarly to Axin, and Leu to Glu substitution of the GID abolished the interaction, with loss of N phosphorylation. The N phosphorylation is also required for its structural loading in a virus-like particle (VLP). Compared to other coronaviruses, N of Sarbecovirus lineage including bat RaTG13 harbors a CDK1-primed phosphorylation site and Gly-rich linker for enhanced phosphorylation by GSK-3β. Furthermore, we found that the S202R mutant found in Delta and R203K/G204R mutant found in the Omicron variant allow increased abundance and hyper-phosphorylation of N. Our observations suggest that GID and mutations for increased phosphorylation in N may have contributed to the evolution of variants.

The maintenance mechanism of hematopoietic stem cell dormancy: role for a subset of macrophages

  • Cheong-Whan Chae;Gun Choi;You Ji Kim;Mingug Cho;Yoo-Wook Kwon;Hyo-Soo Kim
    • BMB Reports
    • /
    • 제56권9호
    • /
    • pp.482-487
    • /
    • 2023
  • Hematopoiesis is regulated by crosstalk between long-term repopulating hematopoietic stem cells (LT-HSCs) and supporting niche cells in the bone marrow (BM). Here, we describe the role of KAI1, which is mainly expressed on LT-HSCs and rarely on other hematopoietic stem-progenitor cells (HSPCs), in niche-mediated LT-HSC maintenance. KAI1 activates TGF-β1/Smad3 signal in LT-HSCs, leading to the induction of CDK inhibitors and inhibition of the cell cycle. The KAI1-binding partner DARC is expressed on macrophages and stabilizes KAI1 on LT-HSCs, promoting their quiescence. Conversely, when DARC+ BM macrophages were absent, the level of surface KAI1 on LT-HSCs decreases, leading to cell-cycle entry, proliferation, and differentiation. Thus, KAI1 acts as a functional surface marker of LT-HSCs that regulates dormancy through interaction with DARC-expressing macrophages in the BM stem cell niche. Recently, we showed very special and rare macrophages expressing α-SMA+ COX2+ & DARC+ induce not only dormancy of LT-HSC through interaction of KAI1-DARC but also protect HSCs by down-regulating ROS through COX2 signaling. In the near future, the strategy to combine KAI1-positive LT-HSCs and α-SMA/Cox2/DARC triple-positive macrophages will improve the efficacy of stem cell transplantation after the ablative chemo-therapy for hematological disorders including leukemia.

Cyclin-Dependent Kinase Inhibitor 2A is a Key Regulator of Cell Cycle Arrest and Senescence in Endothelial Colony-Forming Cells in Moyamoya Disease

  • Seung Ah Choi;Youn Joo Moon;Eun Jung Koh;Ji Hoon Phi;Ji Yeoun Lee;Kyung Hyun Kim;Seung-Ki Kim
    • Journal of Korean Neurosurgical Society
    • /
    • 제66권6호
    • /
    • pp.642-651
    • /
    • 2023
  • Objective : Endothelial colony-forming cells (ECFCs) have been reported to play an important role in the pathogenesis of moyamoya disease (MMD). We have previously observed stagnant growth in MMD ECFCs with functional impairment of tubule formation. We aimed to verify the key regulators and related signaling pathways involved in the functional defects of MMD ECFCs. Methods : ECFCs were cultured from peripheral blood mononuclear cells of healthy volunteers (normal) and MMD patients. Low-density lipoproteins uptake, flow cytometry, high content screening, senescence-associated β-galactosidase, immunofluorescence, cell cycle, tubule formation, microarray, real-time quantitative polymerase chain reaction, small interfering RNA transfection, and western blot analyses were performed. Results : The acquisition of cells that can be cultured for a long time with the characteristics of late ECFCs was significantly lower in the MMD patients than the normal. Importantly, the MMD ECFCs showed decreased cellular proliferation with G1 cell cycle arrest and cellular senescence compared to the normal ECFCs. A pathway enrichment analysis demonstrated that the cell cycle pathway was the major enriched pathway, which is consistent with the results of the functional analysis of ECFCs. Among the genes associated with the cell cycle, cyclin-dependent kinase inhibitor 2A (CDKN2A) showed the highest expression in MMD ECFCs. Knockdown of CDKN2A in MMD ECFCs enhanced proliferation by reducing G1 cell cycle arrest and inhibiting senescence through the regulation of CDK4 and phospho retinoblastoma protein. Conclusion : Our study suggests that CDKN2A plays an important role in the growth retardation of MMD ECFCs by inducing cell cycle arrest and senescence.

Methanol extract of Elsholtzia fruticosa promotes 3T3-L1 preadipocyte differentiation

  • Deumaya Shrestha;Eunbin Kim;Krishna K. Shrestha;Sung-Suk Suh;Sung-Hak Kim;Jong Bae Seo
    • Journal of Animal Science and Technology
    • /
    • 제66권1호
    • /
    • pp.204-218
    • /
    • 2024
  • Elsholtzia fruticosa (EF) is present in tropical regions throughout South Asian countries as well as the Himalayas. Although it has been used as a traditional medicine to treat digestive, respiratory, and inflammatory issues, its effect on preadipocyte differentiation is unknown. In this study, we examined the effects of a methanol extract prepared from EF on the differentiation of 3T3-L1 preadipocytes. Cell differentiation was assessed by microscopic observation and oil-red O staining. The expression of adipogenic and lipogenic genes, including PPARγ and C/EBPα, was measured by western blot analysis and quantitative real-time polymerase chain reaction (qRT-PCR), to provide insight into adipogenesis and lipogenesis mechanisms. The results indicated that EF promotes the differentiation of 3T3-L1 preadipocytes, with elevated lipid accumulation occurring in a concentration-dependent manner without apparent cytotoxicity. EF enhances the expression of adipogenic and lipogenic genes, including PPARγ, FABP4, adiponectin, and FAS, at the mRNA and protein levels. The effect of EF was more pronounced during the early and middle stages of 3T3-L1 cell differentiation. Treatment with EF decreased C/EBP homologous protein (CHOP) mRNA and protein levels, while increasing C/EBPα and PPARγ expression. Treatment with EF resulted in the upregulation of cyclin E and CDK2 gene expression within 24 h, followed by a decrease at 48 h, demonstrating the early-stage impact of EF. A concomitant increase in cyclin-D1 levels was observed compared with untreated cells, indicating that EF modulates lipogenic and adipogenic genes through intricate mechanisms involving CHOP and cell cycle pathways. In summary, EF induces the differentiation of 3T3-L1 preadipocytes by increasing the expression of adipogenic and lipogenic genes, possibly through CHOP and cell cycle-dependent mechanisms.

Curcumin과 resveratrol에 의한 두경부암 유래의 HN-4 세포의 세포주기, 세포사 및 전이관련 단백질의 발현 조절 (EFFECT OF CURCUMIN AND RESVERATROL ON THE CELL CYCLE REGULATION, APOPTOSIS AND INHIBITION OF METASTASIS RELATED PROTEINS IN HN-4 CELLS)

  • 김사엽;이상한;권택규
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제29권5호
    • /
    • pp.272-281
    • /
    • 2003
  • 본 연구에서는 두경부암 HN-4 세포에서 cancer chemopreventive agent인 curcumin과 resveratrol를 처리하여 HN-4 세포의 생육 억제의 원인이 apoptotic cell death에 의하여 일어나며 세포 주기 조절 단백질의 발현 및 암 전이에 관련된 MMP 활성 저해 기전에 대하여 이해하고자 하였다. HN-4 세포에 다양한 농도(10-100 ${\mu}M$) curcumin을 처리하여 세포주기 조절 단백질의 발현을 측정한 결과 cdk1과 cdk4 단백질이 농도 의존적으로 발현이 감소하였으며, resveratrol 처리에서는 cyclin A 단백질의 특이적인 감소 현상을 확인하였다. Curcumin에 의한 apoptosis 유도 기전을 조사한 결과 anti-apoptotic 기능이 있는 Bcl-2 및 Bcl-xL 단백질 발현 감소 현상은 없었으나, caspase 저해 IAP family 단백질중 cIAP1과 survivin 단백질 발현 현상이 처리 농도 의존적으로 감소하였다. Resveratrol을 처리한 경우 Bcl-2 및 survivin 단백질 발현 감소현상을 확인하였다. Curcumin과 resveratrol에 의한 apoptosis 과정은 caspase-3 의존적인 apoptosis 유도 기전을 보였다. Curcumin에 의한 apoptosis 과정은 항산화제인 NAC 처리에 의해서 저해되었다. Curcumin과 NAC 동시 처리는 cytochrome c 유리, caspase-3 활성화 및 Bax 단백질 분절 현상을 억제하였다. 그러나 resveratrol에 의한 apoptosis 과정은 NAC 처리에 의하여 억제되지 않았다. Curcumin과 resveratrol에 의한 암 전이 관련 단백질인 MMP2와 9의 활성 저해효과도 확인하였다. 결론적으로, curcumin에 의한 항암효과는 세포주기 조절 및 apoptosis 유도 및 전이 관련 단백질의 활성 억제를 통하여 야기되는 것으로 생각되어 진다.