• Title/Summary/Keyword: cdk

Search Result 344, Processing Time 0.051 seconds

RNA-sequencing Profiles of Cell Cycle-Related Genes Upregulated during the G2-Phase in Giardia lamblia

  • Kim, Juri;Shin, Mee Young;Park, Soon-Jung
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.2
    • /
    • pp.185-189
    • /
    • 2019
  • To identify the component(s) involved in cell cycle control in the protozoan Giardia lamblia, cells arrested at the G1/S- or G2-phase by treatment with nocodazole and aphidicolin were prepared from the synchronized cell cultures. RNA-sequencing analysis of the 2 stages of Giardia cell cycle identified several cell cycle genes that were up-regulated at the G2-phase. Transcriptome analysis of cells in 2 distinct cell cycle stages of G. lamblia confirmed previously reported components of cell cycle (PcnA, cyclin B, and CDK) and identified additional cell cycle components (NEKs, Mad2, spindle pole protein, and CDC14A). This result indicates that the cell cycle machinery operates in this protozoan, one of the earliest diverging eukaryotic lineages.

Caspase-3-mediated cleavage of Cdc6 induces nuclear localization of truncated Cdc6 and apoptosis

  • Yim, Hyung-Shin;Jin, Ying-Hua;Park, Byoung-Duck;Lee, Seung-Ki
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.71.1-71.1
    • /
    • 2003
  • We show that Cdc6, an essential initiation factor for DNA replication, undergoes caspase-3-mediated cleavage in the early stages of apoptosis in HeLa cells and SK-HEP-1 cells induced by etoposide, paclitaxel, ginsenoside Rh2, or TRAIL. The cleavage occurs at the SEVD$\^$442//G motif and generates an N-terminal truncated Cdc6 fragment (p49-tCdc6) that lacks the carboxy-terminal nuclear export sequence (NES). Cdc6 is known to be phosphorylated by cyclin A-Cyclin A-dependent kinase 2 (Cdk2), an event that promotes its exit from the nucleus and probably blocks it from initiating inappropriate DNA replication. (omitted)

  • PDF

Up-regulation of Cyelin A-Cdk2 activity is associated with depolarization of mitochondrial membrane potential during apoptosis of human hepatoma SK-HEP1 cells induced by treatment with panaxadiol

  • Park, Byoung-Duck;Jin, Ying-Hua;Yim, Hyung-Shin;Lee, Seung-Ki
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.167.1-167.1
    • /
    • 2003
  • Here we show that panaxadiol, a ginseng saponin with a dammarane skeleton, induces acute apoptotic cell death in human hepatoma SK-HEP-1 cells as evidenced by analysis of DNA fragmentation, caspase activation, and changes in cell morphology. The kinetic study showed that panaxadiol-induced apoptosis is associated with depolarization of mitochondrial membrane potential and cytochrome c release. Sequential activations of caspases-depolarization of mitochondrial membrane potential and cytochrome c release. Sequential activations of caspases-9, and -3, or -7, but not of caspase 8 coincide well in a time dependent manner with mitochondrial membrane depolarization and cytochrome c release from mitochondria during apoptosis of SK-HEP-1 cells induced by treatment with panaxadiol. (omitted)

  • PDF

Studies of the Effects of Acupuncture Stimulation at Huatuo Jiaji(EX B2) Points on Axonal Regeneration of Injured Sciatic Nerve in the Rats (화타협척혈 침자극에 의한 손상 말초신경의 재생효과에 관한 연구)

  • Kim, Dae-Feel;Park, Young-Hoi;Keum, Dong-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.18 no.4
    • /
    • pp.39-61
    • /
    • 2008
  • Objectives : The present study was performed to investigate whether acupuncture stimulation in the rats affected regeneration properties of the injured sciatic nerve. A differential effect of acupuncture stimulation on the one point near the spinal nerve root controlling sciatic nerve activity and the other point in the peripheral area subordinated by injured nerve was compared. Materials and Methods: Rat sciatic nerves were injured by crush, and the effects on axonal regeneration on injured sciatic nerves were evaluated by acupuncture stimulation at two different regions. In proximal acupuncture stimulation group, acupuncture stimulation was performed on Huatuo Jiaji(EX B2) points located from L5 to S1 vertebral levels to stimulate the nearest spinal nerve root that innervates sciatic nerves. In distal acupuncture stimulation group, acupuncture stimulation was performed on Zusanli(ST 36) and Weizhong(BL 40) points to stimulate at peripheral area dominated by injured sciatic nerves. Acupuncture stimulation was given every other days for 1 or 2 weeks. Sciatic nerve tissues collected from acupuncture stimulation experimental groups, injury control group, and intact animal group were used for protein analysis by Western blotting or Hoechst nuclear staining. To determine axonal regeneration, Dil fluorescence dye was injected into the sciatic nerve 0.5 cm distal to the injury site in individual animal groups and Dil-labeled cells by retrograde tracing were measured in the DRG at lumbar 5 or in the spinal cord. DRG sensory neurons prepared from individual animal groups were used to measure the extent of neurite outgrowth and for immunofluorescence staining with anti-GAP-43 antibody. Results : Animal groups given proximal or distal acupuncture stimulation showed upregulation of GAP-43 and Cdc2 protein levels in the sciatic nerve at 7 days after injury. Cdk2 protein levels were strongly induced by nerve injury, but did not show changes by acupuncture stimulation. Phospho-Erk1/2 protein levels were elevated by acupuncture stimulation above those present in the injury control animals. These increase in regeneration-associated protein levels appeared to be related with increase cell proliferation in the injured sciatic nerves. Hoechst 33258 staining of sciatic nerve tissue to visualize nuclei of individual cells showed increased Schwann cell number in the distal portion of the injured nerve 7 and 14 days after injury and further increases by acupuncture stimulation particularly at the proximal position. Measurement of axonal regeneration by retrograde tracing showed significantly increased Dil-labeled cells in proximal acupuncture stimulation group compared to distal acupuncture stimulation group and injury control group. Finally, an evaluation of axonal regeneration by retrograde tracing showed increased number of Dil labeled cells in the DRG at lumbar 5 or in the ventral horn of the spinal cord at lower thoracic level at 7 days after nerve injury. Conclusions : The present data show that the proximal acupuncture stimulation at Huatuo Jiaji(EX B2) points governing injured sciatic nerves was more effective for axonal regeneration than the distal acupuncture stimulation. Further studies on functional recovery or associated molecular mechanisms should be critical for developing animal models and clinical applications.

Microtubule-damaging Chemotherapeutic Agent-mediated Mitotic Arrest and Apoptosis Induction in Tumor Cells (미세소관-손상 항암제 처리에 의한 세포주기의 정지 및 에폽토시스 유도)

  • Jun, Do Youn;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.376-386
    • /
    • 2016
  • Apoptosis induction has been proposed as an efficient mechanism by which malignant tumor cells can be removed following chemotherapy. The intrinsic mitochondria-dependent apoptotic pathway is frequently implicated in chemotherapy-induced tumor cell apoptosis. Since DNA-damaging agent (DDA)-induced apoptosis is mainly regulated by the tumor suppressor protein p53, and since more than half of clinical cancers possess inactive p53 mutants, microtubule-damaging agents (MDAs), of which apoptotic effect is mainly exerted via p53-independent routes, can be promising choice for cancer chemotherapy. Recently, we found that the apoptotic signaling pathway induced by MDAs (nocodazole, 17α-estradiol, or 2-methoxyestradiol) commonly proceeded through mitotic spindle defect-mediated prometaphase arrest, prolonged Cdk1 activation, and subsequent phosphorylation of Bcl-2, Mcl-1, and Bim in human acute leukemia Jurkat T cells. These microtubule damage-mediated alterations could render the cellular context susceptible to the onset of mitochondria-dependent apoptosis by triggering Bak activation, Δψm loss, and resultant caspase cascade activation. In contrast, when the MDA-induced Bak activation was inhibited by overexpression of anti-apoptotic Bcl-2 family proteins (Bcl-2 or Bcl-xL), the cells in prometaphase arrest failed to induce apoptosis, and instead underwent mitotic slippage and endoreduplication cycle, leading to formation of populations with 8N and 16N DNA content. These data indicate that cellular apoptogenic mechanism is critical for preventing polyploid formation following MDA treatment. Since the formation of polyploid cells, which are genetically unstable, may cause acquisition of therapy resistance and disease relapse, there is a growing interest in developing new combination chemotherapies to prevent polyploidization in tumors after MDA treatment.

Regulatory Mechanism of Radiation-induced Cancer Cell Death by the Change of Cell Cycle (세포주기 변화에 타른 방사선 유도 암세포 사망의 조절기전)

  • Jeong Soo-Jin;Jeong Min-Ho;Jang Ji-Yeon;Jo Wol-Soon;Nam Byung-Hyouk;Jeong Min-Za;Lim Young-Jin;Jang Byung Gon;Youn Seon-Min;Lee Hyung Sik;Hur Won Joo;Yang Kwang Mo
    • Radiation Oncology Journal
    • /
    • v.21 no.4
    • /
    • pp.306-314
    • /
    • 2003
  • Purpose : In our Previous study, we have shown the main cel1 death pattern Induced by irradiation or protein tyrosine kinase (PTK) inhibitors in K562 human myeiogenous leukemic cell line. Death of the cells treated with irradiation alone was characterized by mitotic catastrophe and typical radiation-induced apoptosis was accelerated by herblmycin A (HMA). Both types of cell death were inhibited by genistein. In this study, we investigated the effects of HMA and genistein on cell cycle regulation and its correlation with the alterations of radiation-induced cell death. Materials and Methods: K562 cells In exponential growth phase were used for this study. The cells were Irradiated with 10 Gy using 6 MeV Linac (200-300 cGy/min). Immediately after irradiation, cells were treated with 250 nM of HMA or 25 $\mu$N of genistein. The distributions of cell cycle, the expressions of cell cycle-related protein, the activities of cyclin-dependent kinase, and the yield of senescence and differentiation were analyzed. Results: X-irradiated cells were arrested In the G2 phase of the cell cycle but unlike the p53-positive cells, they were not able to sustain the cell cycle arrest. An accumulation of cells in G2 phase of first ceil-cycle post-treatment and an increase of cyclin Bl were correlated with spontaneous, premature, chromosome condensation and mitotic catastrophe. HMA induced rapid G2 checkpoint abrogation and concomitant p53-independent Gl accumulation. HMA-induced cell cycle modifications correlated with the increase of CDK2 kinase activity, the decrease of the expressions of cyclins I and A and of CDK2 kinase activity, and the enhancement of radiation-induced apoptosis. Genistein maintained cells that were arrested in the G2-phase, decreased the expressions of cyclin Bl and cdc25c and cdc25C kinase activity, increased the expression of pl6, and sustained senescence and megakaryocytic differentiation. Conclusion: The effects of HMA and genistein on the radiation-induced cell death of KS62 cells were closely related to the cell cycle regulatory activities. In this study, we present a unique and reproducible model in which for investigating the mechanisms of various, radiation-induced, cancer cell death patterns. Further evaluation by using this model will provide a potent target for a new strategy of radiotherapy.

In silico Analysis of Downstream Target Genes of Transcription Factors (생명정보학을 이용한 전사인자의 하위표적유전자 분석에 관한 연구)

  • Hwang, Sang-Joon;Chun, Sang-Young;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.33 no.2
    • /
    • pp.125-132
    • /
    • 2006
  • Objective: In the previous study, we complied the differentially expressed genes during early folliculogenesis. Objective of the present study was to identify downstream target genes of transcription factors (TFs) using bioinformatics for selecting the target TFs among the gene lists for further functional analysis. Materials & Methods: By using bioinformatics tools, constituent domains were identified from database searches using Gene Ontology, MGI, and Entrez Gene. Downstream target proteins/genes of each TF were identified from database searches using TF database ($TRANSFAC^{(R)}$ 6.0) and eukaryotic promoter database (EPD). Results: DNA binding and trans-activation domains of all TFs listed previously were identified, and the list of downstream target proteins/genes was obtained from searches of TF database and promoter database. Based on the known function of identified downstream genes and the domains, 3 (HNF4, PPARg, and TBX2) out of 26 TFs were selected for further functional analysis. The genes of wee1-like protein kinase and p21WAF1 (cdk inhibitor) were identified as potential downstream target genes of HNF4 and TBX2, respectively. PPARg, through protein-protein interaction with other protein partners, acts as a transcription regulator of genes of EGFR, p21WAF1, cycD1, p53, and VEGF. Among the selected 3 TFs, further study is in progress for HNF4 and TBX2, since wee1-like protein kinase and cdk inhibitor may involved in regulating maturation promoting factor (MPF) activity during early folliculogenesis. Conclusions: Approach used in the present study, in silico analysis of downstream target genes, was useful for analyzing list of TFs obtained from high-throughput cDNA microarray study. To verify its binding and functions of the selected TFs in early folliculogenesis, EMSA and further relevant characterizations are under investigation.

Inhibition of Adipocyte Differentiation by Methanol Extracts of Oenanthe javanica Seed in 3T3-L1 Preadipocytes (돌미나리씨 추출물에 의한 3T3-L1 지방전구세포의 분화 억제)

  • Ji, Hyang Hwa;Jeong, Hyun Young;Jin, Soojung;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1688-1696
    • /
    • 2012
  • Oenanthe javanica has been used as a food source and also in traditional folk medicine for its detoxifying properties and anti-microbial effects since ancient times. In this study, we evaluated the effect and mechanism of O. javanica seed methanol extract (OJSE) on adipocyte differentiation by 3T3-L1 preadipocytes. Under non-toxic conditions, OJSE treatment resulted in a dose-dependent inhibition of lipid droplet generation and triglyceride accumulation by suppressing adipocyte differentiation, which are associated with the decreased expression of key proadipogenic transcription factors including CCAAR/enhancer binding protein ${\alpha}$, ${\beta}$ ($C/EBP{\alpha}$, $C/EBP{\beta}$) and peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$). OJSE also significantly inhibited proliferation and differentiation of 3T3-L1 preadipocytes through G1-phase arrest, indicating that OJSE blocked mitotic clonal expansion during adipocyte differentiation. Investigation of the alteration of G1 phase arrest-related proteins indicated a dose-dependent increase in the expression of p21 and reduction in expression of cyclin E, Cdk2, E2F-1 and phospho-Rb by OSJE. Taken together, these results suggest that OJSE inhibits adipocyte differentiation by blocking the mitotic clonal expansion, which is accompanied by preadipocyte cell cycle arrest.

Activation and Abnormalities of Cell Cycle Regulating Factor in Head and Neck Squamous Cell Carcinoma Cell Lines: Abnormal Expression of CDKN2 Gene in Laryngeal Squamous Cell Carcinoma (두경부 편평상피세포암 세포주에서 세포주기조절인자의 활성 및 이상 : 후두편평상피세포암에서 종양억제유전자 CDKN2 유전자의 발현이상)

  • Song, Si-Youn;Han, Tae-Hee;Bai, Chang-Hoon;Kim, Yong-Dae;Song, Kei-Won
    • Journal of Yeungnam Medical Science
    • /
    • v.22 no.2
    • /
    • pp.166-182
    • /
    • 2005
  • Background: Cyclin-dependent kinase (CDK) inhibitors are family of molecules that regulate the cell cycle. The CDKN2, a CDK4 inhibitor, also called p16, has been implicated in human tumorigenesis. The CDKN2 inhibits the cyclin/CDK complexes which regulate the transition from G1 to S phase of cell cycle. There is a previous report that homozygous deletion of CDKN2 region on chromosome 9p21 was detected frequently in astrocytoma, glioma and osteosarcoma, less frequently in lung cancer, leukemia and ovarian cancer, but not detected in colon cancer and neuroblastoma. However, little is known about the relationship between CDKN2 and laryngeal cancer. Therefore this study was initiated to investigate the role of CDKN2 in human laryngeal squamous cell carcinoma development.1) Materials and methods: We used 5 human laryngeal carcinoma cell lines whether they have deletions or losses of CDKN2 gene expression by DNA-PCR or RT-PCR, respectively. We examined 8 fresh frozen human laryngeal cancer tissues to detect the loss of heterozygosity (LOH) of CDKN2. PCR was performed by using microsatellite markers of short arm of human chromosome 9 (D9S126, D9S144, D9S156, D9S161, D9S162, D9S166, D9S171, D9S200 and D9SIFNA). For informative cases, allelic loss was scored if the signal of one allele was significantly decreased in tumor DNA when compared to the same allele in normal DNA. Results: The CDKN2 DNA deletion was observed in 3 cell lines. The CDKN2 mRNA expression was observed in only one cell line, which was very weak. LOH was detected in 7 cases (87.5%). Conclusion: These results suggest that CDKN2 plays a role in the carcinogenesis of human laryngeal squamous cell carcinoma.

  • PDF