• Title/Summary/Keyword: cavity vibration

Search Result 243, Processing Time 0.024 seconds

Predicting Noise inside a Trimmed Cavity Due to Exterior Aero-Acoustic Excitation (외부 유동 소음원에 의한 흡차음재 공간내에서의 소음 예측)

  • Jeong, ChanHee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.569-569
    • /
    • 2014
  • The interior vehicle noise due to the exterior aerodynamic field is an important topic in the acoustic design of a car. The air flow detached from the A-pillar and impacting the side windows are of particular interest as they are located close to the driver / passenger and provides a lower insulation index than the trimmed car body parts. This paper presents a numerical analysis method for a simplified vehicle model. The internal air cavity including trim component are included in the simulation. The car body includes the windshield and two side windows. The body is made of aluminum and trimmed with porous layers. The methodology proposed in this paper relies on two steps: the first step involves the computation of the exterior flow and turbulence induced non-linear acoustic field using CFD Code. The second step consists in the computation of the vibro-acoustic transmission through the window using the finite element vibro-acoustic solver Actran.

  • PDF

New Formulation of MNDIF Method for Accurate Eigenvalue Analysis of Concave Acoustic Cavities (오목 음향 공동의 고정밀도 고유치 해석을 위한 새로운 MNDIF법 정식 개발)

  • Kang, S.W.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.11
    • /
    • pp.1003-1011
    • /
    • 2013
  • A new formulation of the MNDIF method is introduced to extract highly accurate eigenvalues of concave acoustic cavities. Since the MNDIF method, which was introduced by the author, can be applicable for only convex acoustic cavities, a new approach of dividing a concave cavity into two convex domains and formulating an algebraic eigenvalue problem is proposed in the paper. A system matrix equation, which gives eigenvalues, is obtained from boundary conditions for each domain and the condition of continuity in the interface between the two domains. The validity and accuracy of the proposed method are shown through example studies.

Acoustic Mode Analysis to Identify Cavity Noise of Scroll Compressor (스크롤 압축기의 공동 소음 규명을 위한 음향모드 분석)

  • Kim, Seung-Yup;Lee, Dong-Soo;Suh, Jeong-Hwan;Heo, Dae-Nyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.83-88
    • /
    • 2004
  • Acoustic modes of internal region of 4-hp scroll compressor are identified by measuring transfer functions between a reference and 84 measuring points. The corresponding acoustic mode-shapes and natural frequencies were calculated by analysis software SYSNOISE. There exist two clearly distinguishable dipole modes of vertical and horizontal direction and a single quadrupole mode in the frequency region of interest. It shows that the natural frequencies of the identified modes are linearly sensitive to suction pressure (Ps) but relatively in sensitive to discharge pressure (Pd) in operating condition.

  • PDF

직육면체 공동 내부의 소음 저감을 위한 능동 구조-음향 연성제어

  • 이상원;황철호;이장무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.218-223
    • /
    • 1997
  • The technique used is the active structural acoutrol (ASAC)approach which involves controlling the acoustic response of a panel-cavity covpled system by applying oscillating force inputs in the form of prezoelectric actuators directly to the flexible panel. The linear quadratic Gaussian control scheme is used for attenuating nosie inside the rectangular enclosure causing by flexible wall vibration. Results indicated the application of control inputs to the radiating wall resukted in considerable noise reductions inside the cavity. Auso,the possibility of application to the more complicated fluid-structure coupled system is verified.

FEM acoustic modal analysis due to location of acoustic baffles to avoid acoustic resonance in the tube bank of boiler for power plant (보일러 튜브군의 음향공진 회피를 위한 음향배플의 위치에 따른 FEM 음향모드해석)

  • Ahn, Sung-Jong;Ju, Young-Ho;Kim, Cheol-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.150-154
    • /
    • 2012
  • A flow induced mechanical vibration and acoustic resonance should be considered at design stage because they are mainly occurred in the tube bank of boiler. Acoustic resonance is occurred when the vortex shedding frequency of tube bank coincides with the acoustic natural frequency of the cavity. Effective solution to avoid acoustic resonance is installing acoustic baffles in the tube banks parallelly inside of the flow cavity. Thus, location and number of acoustic baffles should be exactly calculated to eliminate the acoustic resonance. This paper presents case study of acoustic resonance due to inappropriate number and location of acoustic baffles. Measured frequency and mode in the study is verified by FEM acoustic modal analysis. The number and location of acoustic baffles to avoid acoustic resonance are calculated by using FEM acoustic modal analysis.

  • PDF

Physical and Numerical Investigation of Cavitating Flow-Induced Vibration of a Flexible Hydrofoil

  • Wu, Qin;Wang, Guoyu;Huang, Biao
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.3
    • /
    • pp.188-196
    • /
    • 2017
  • The objective of this paper is to investigate the flow-induced vibration of a flexible hydrofoil in cavitating flows via combined experimental and numerical studies. The experiments are presented for the modified NACA66 hydrofoil made of POM Polyacetate in the closed-loop cavitation tunnel and the numerical investigations are performed using a hybrid coupled fluid structure interaction model. The results showed that with the decreasing of cavitation number, the vibration magnitude increases dramatically for the cloud cavitation and declines for the supercavitation. The cloud cavitation development strongly affects the vibration response, with the main frequency of the vibration being accordance with the cavity shedding frequency and other two frequencies corresponding to the bending and twisting frequencies.

The Study for Improving the Combustion in a D.I. Diesel Engine using Multi-cavity Piston (Multi-cavity Piston에 의한 디젤기관의 연소성 향상에 관한 연구)

  • Park, Chul Hwan;Bang, Joong Cheol
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.3
    • /
    • pp.13-20
    • /
    • 2015
  • The performance of a direct-injection diesel engine often depends on the strength of swirl or squish, the shape of combustion chamber, the number of nozzle holes, etc. This is natural because the combustion in the cylinder was affected by the mixture formation process. Since the available duration to make the mixture formation of air-fuel is very short, it is difficult to make complete mixture. Therefore, an early stage of combustion is violent, which leads to the weakness of noise and vibration. In this paper, the combustion process of a common-rail diesel engine was studied by employing two kinds of pistons. One has several cavities on the piston crown to intensify the squish during the compression stroke in order to improve the atomization of fuel, we call this multi cavity piston in this paper. The other is a toroidal single cavity piston, generally used in high speed diesel engines. To take photographs of flame and flaming duration, a four-stroke diesel engine was remodeled into a two-stroke visible single cylinder engine and a high speed video camera was used.

3-D Vibration Modes of the Tire in Ground Contact and Its Effects on Axle When Excited by a 3-D Impact at the Center of Contact Patch (접지면 중앙에서 3차원 방향의 충격 가진에 의한 타이어의 3차원 진동형이 축에 미치는 영향)

  • 김용우;남진영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.171-182
    • /
    • 2003
  • Tire vibration modes are known to play a key role in vehicle ride and comfort characteristics. Inputs to the tire such as impacts, rough road surface, tire nonuniformities, and tread patterns can potentially excite tire vibration. In this study, experimental modal analysis on the tire in ground contact are performed by a 3-D impact at the center of contact patch to investigate which modes of tire influence the vibration of wheel and axle. Through the experiment, the vibration transmission properties from tire to axle are examined. And we have compared the influential tire modes when the tire is excited by a vertical impact with those when excited by the 3-D impact. Additionally, the modes of ground contact tire are compared with those of the suspended tire.

Vibration Reduction of Pump And Pipe System (대형펌프와 조합된 배관계 진동 저감)

  • Bae, Chun-Hee;Won, Jong-Bum;Cho, Cheul-Whan;Yang, Kyeong-Hyeon;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.652-657
    • /
    • 2000
  • In this paper, Firstly, it is shown that the high vibration source of piping system is the pulsation transmission of pipe line element, such as, orifice plate, valves and the control valve is a broad band source and the branch wall and the cavity have vortex frequency. Secondly, in order to decrese the high vibration of piping system, some practical Friction damper with high damping have been developed and its effectiveness is investigated as installing it at piping system practically.

  • PDF

3-D Vibration Modes of the Tire in Ground Contact and Its Effects on Wheel and Axle When Excited by a Vertical Impact at the Center of Contact Patch (접지면 중앙에서 수직방향 가진에 의한 타이어의 3차원 진동모드가 휠/축에 미치는 영향)

  • Kim, Yong-Woo;Nam, Jin-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.325-332
    • /
    • 2004
  • Tire vibration modes are known to play a key role in vehicle ride and comfort characteristics. Inputs to the tire such as impacts, rough road surface, tire nonuniformities, and tread patterns can potentially excite tire vibration. In this study, experimental modal analysis on the tire with ground contact are performed by impacting the tire in the radial direction at the center of contact patch. To investigate which modes of tire influence the vibration of wheel and axle when the tire is in contact with ground, the vibration characteristics such as frequency response functions, natural frequencies and their mode shapes from tire to wheel/axle are examined.