• Title/Summary/Keyword: caveolin

Search Result 49, Processing Time 0.025 seconds

Identification of the Gene Responsible for Chicken Muscular Dystrophy

  • Matsumoto, Hirokazu;Sasazaki, Shinji;Mannen, Hideyuki
    • Korean Journal of Poultry Science
    • /
    • v.38 no.2
    • /
    • pp.145-154
    • /
    • 2011
  • By a series of positional cloning, we successfully narrowed down the AM candidate region to approximately 1.2 Mbp on GGA2q including 7 functional genes. Subsequently, we identified WWP1 gene as the most likely AM candidate by sequence comparison. The amino acid sequence around the candidate mutation was highly conserved among tetrapods, suggesting that WWP1 is the causative gene of chicken muscular dystrophy. Transfection of mutated WWP1 gene into $C_2C_{12}$ myoblasts disrupted muscle differentiation process. The abnormal muscle differentiation is a characteristic of chicken muscular dystrophy, so we could demonstrate a part of phenotype of the disease. Furthermore, western blotting revealed that accumulation of caveolin-3 protein is limited in damaged muscle of muscular dystrophic chicken, suggesting caveolin-3 may be associated with the pathological change of the disease. We could conclude that WWP1 gene is the responsible one for chicken muscular dystrophy from these results, but the mechanism leading the onset should be clarified in the future. The information will contribute to the study of chicken muscular dystrophy and the corresponding human dystrophies.

A familial case of limb-girdle muscular dystrophy with CAV3 mutation

  • Lee, Seungbok;Jang, Sesong;Shim, Youngkyu;Kim, Woo Joong;Kim, Soo Yeon;Cho, Anna;Kim, Hunmin;Kim, Jong-Il;Lim, Byung Chan;Hwang, Hee;Choi, Jieun;Kim, Ki Joong;Chae, Jong Hee
    • Journal of Genetic Medicine
    • /
    • v.16 no.2
    • /
    • pp.67-70
    • /
    • 2019
  • Limb-girdle muscular dystrophy (LGMD) is a group of muscular dystrophies that has extremely heterogeneous clinical features and genetic background. The caveolin-3 gene (CAV3) is one of the causative genes. LGMD appears as a clinical continuum, from isolated skeletal muscle involvement to long QT syndrome. Here we report two patients without apparent muscle weakness in a family with CAV3 mutation. A 7-month-old Korean boy visited our muscle clinic because of an incidental finding of elevated serum creatine kinase (CK) concentration (680 IU/L, reference range, 20-270 IU/L) without clinical symptoms. The patient was born after an uneventful pregnancy and showed normal developmental milestones. He developed pseudohypertrophy of his calf muscle during the follow-up. We obtained a muscle biopsy at age 14 months, which showed size variations and degenerating/regenerating myofibers with endomysial fibrosis and immunohistochemical evidence of normal dystrophin. Under the impression of LGMD, we performed target panel sequencing and identified a heterozygous in-frame mutation of CAV3, c.307_312delGTGGTG (p.Val103_Val104del). Immunohistochemical staining of muscle indicated complete loss of caveolin-3 compared with normal control muscle, which supported the variant's pathogenicity. We performed segregation analysis and found that the patient's mother had the same variant with elevated serum CK level (972 IU/L). We report on autosomal dominant familial caveolinopathy caused by a pathogenic variant in CAV3, which was asymptomatic until the fourth decade. This case highlights the utility of next generation sequencing in the diagnosis of muscular dystrophies and the additive role of muscle biopsy to confirm the variants.

miR-3074-3p promotes myoblast differentiation by targeting Cav1

  • Lee, Bora;Shin, Yeo Jin;Lee, Seung-Min;Son, Young Hoon;Yang, Yong Ryoul;Lee, Kwang-Pyo
    • BMB Reports
    • /
    • v.53 no.5
    • /
    • pp.278-283
    • /
    • 2020
  • Muscle fibers are generally formed as multinucleated fibers that are differentiated from myoblasts. Several reports have identified transcription factors and proteins involved in the process of muscle differentiation, but the roles of microRNAs (miRNAs) in myogenesis remain unclear. Here, comparative analysis of the miRNA expression profiles in mouse myoblasts and gastrocnemius (GA) muscle uncovered miR-3074-3p as a novel miRNA showing markedly reduced expression in fully differentiated adult skeletal muscle. Interestingly, elevating miR-3074-3p promoted myogenesis in C2C12 cells, primary myoblasts, and HSMMs, resulting in increased mRNA expression of myogenic makers such as Myog and MyHC. Using a target prediction program, we identified Caveolin-1 (Cav1) as a target mRNA of miR-3074-3p and verified that miR-3074-3p directly interacts with the 3' untranslated region (UTR) of Cav1 mRNA. Consistent with the findings in miR-3074-3p-overexpressing myoblasts, knockdown of Cav1 promoted myogenesis in C2C12 cells and HSMMs. Taken together, our results suggest that miR-3074-3p acts a positive regulator of myogenic differentiation by targeting Cav1.

Mechanistic Analysis of Taxol-induced Multidrug Resistance in an Ovarian Cancer Cell Line

  • Wang, Ning-Ning;Zhao, Li-Jun;Wu, Li-Nan;He, Ming-Feng;Qu, Jun-Wei;Zhao, Yi-Bing;Zhao, Wan-Zhou;Li, Jie-Shou;Wang, Jin-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.4983-4988
    • /
    • 2013
  • Objectives: To establish a taxol-resistant cell line of human ovarian carcinoma (A2780/Taxol) and investigate its biological features. Methods: The drug-resistant cell line (A2780/Taxol) was established by continuous stepwise selection with increasing concentrations of Taxol. Cell morphology was assessed by microscopy and growth curves were generated with in vitro and in vivo tumor xenograft models. With rhodamine123 (Rh123) assays, cell cycle distribution and the apoptotic rate were analyzed by flow cytometry (FCM). Drug resistance-related and signal associated proteins, including P-gp, MRPs, caveolin-1, PKC-${\alpha}$, Akt, ERK1/2, were detected by Western blotting. Results: A2780/Taxol cells were established with stable resistance to taxol. The drug resistance index (RI) was 430.7. Cross-resistance to other drugs was also shown, but there was no significant change to radioresistance. Compared with parental cells, A2780/Taxol cells were significantly heteromorphous, with a significant delay in population doubling time and reduced uptake of Rh123 (p<0.01). In vivo, tumor take by A2780 cells was 80%, and tumor volume increased gradually. In contrast, with A2780/Taxol cells in xenograft models there was no tumor development. FCM analysis revealed that A2780/Taxol cells had a higher percentage of G0/G1 and lower S phase, but no changes of G2 phase and the apoptosis rate. Expression of P-gp, MRP1, MRP2, BCRP, LRP, caveolin-1, PKC-${\alpha}$, Phospho-ERK1/2 and Phospho-JNK protein was significantly up-regulated, while Akt and p38 MARK protein expression was not changed in A2780/Taxol cells. Conclusion: The A2780/Taxol cell line is an ideal model to investigate the mechanism of muti-drug resistance related to overexpression of drug-resistance associated proteins and activation of the PKC-${\alpha}/ERK$ (JNK) signaling pathway.

Mitochondrial oxidative phosphorylation complexes exist in the sarcolemma of skeletal muscle

  • Lee, Hyun;Kim, Seung-Hyeob;Lee, Jae-Seon;Yang, Yun-Hee;Nam, Jwa-Min;Kim, Bong-Woo;Ko, Young-Gyu
    • BMB Reports
    • /
    • v.49 no.2
    • /
    • pp.116-121
    • /
    • 2016
  • Although proteomic analyses have revealed the presence of mitochondrial oxidative phosphorylation (OXPHOS) proteins in the plasma membrane, there have been no in-depth evaluations of the presence or function of OXPHOS I-V in the plasma membrane. Here, we demonstrate the in situ localization of OXPHOS I-V complexes to the sarcolemma of skeletal muscle by immunofluorescence and immunohistochemistry. A portion of the OXPHOS I-V complex proteins was not co-stained with MitoTracker but co-localized with caveolin-3 in the sarcolemma of mouse gastrocnemius. Mitochondrial matrix-facing OXPHOS complex subunits were ectopically expressed in the sarcolemma of the non-permeabilized muscle fibers and C2C12 myotubes. The sarcolemmal localization of cytochrome c was also observed from mouse gastrocnemius muscles and C2C12 myotubes, as determined by confocal and total internal resonance fluorescence (TIRF) microscopy. Based on these data, we conclude that a portion of OXPHOS complexes is localized in the sarcolemma of skeletal muscle and may have non-canonical functions.

5'-CpG Island Promoter Hypermethylation of the CAV-1 Gene in Breast Cancer Patients of Kashmir

  • Syeed, Nidda;Hussain, Firdous;Husain, Syed Akhtar;Siddiqi, Mushtaq A.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.371-376
    • /
    • 2012
  • Background: Caveolin-1 (CAV-1), encoding the structural component of cellular caveolae, is a suggested tumor suppressor gene involved in cell signalling. Aberrant promoter methylation of CAV-1 is associated with inactivation of expression. We previously observed CAV-1 mutations in breast cancers and therefore devised this study to examine the hypermethylation status of the promoter region of CAV-1 with reference to breast cancer progression and development. Methods: Hypermethylation status of CAV-1 was analyzed by methylation specific PCR. Loss of expression of the CAV-1 gene was further evaluated by semi-quantitative rt-PCR. Results: 28/130 (21.5%) breast cancer cases showed promoter hypermethylation with reduced CAV-1 expression levels when compared with adjacent normal breast tissue. CAV-1 gene hypermethylation was significantly related to menopausal status, histopathological grade and age. Conclusion: The rationale of our study is that CAV-1 gene is transcriptionally repressed in breast cancer cells due to hypermethylation. Our results reveal that promoter hypermethylation and loss of expression of the CAV-1 gene is an important alternative mechanism for inactivation of CAV-1 leading to complete gene silencing.

Ginsenosides: potential therapeutic source for fibrosis-associated human diseases

  • Li, Xiaobing;Mo, Nan;Li, Zhenzhen
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.386-398
    • /
    • 2020
  • Tissue fibrosis is an eventual pathologic change of numerous chronic illnesses, which is characterized by resident fibroblasts differentiation into myofibroblasts during inflammation, coupled with excessive extracellular matrix deposition in tissues, ultimately leading to failure of normal organ function. Now, there are many mechanistic insights into the pathogenesis of tissue fibrosis, which facilitate the discovery of effective antifibrotic drugs. Moreover, many chronic diseases remain a significant clinical unmet need. For the past five years, many research works have undoubtedly addressed the functional dependency of ginsenosides in different types of fibrosis and the successful remission in various animal models treated with ginsenosides. Caveolin-1, interleukin, thrombospondin-1 (TSP-1), liver X receptors (LXRs), Nrf2, microRNA-27b, PPARδ-STAT3, liver kinase B1 (LKB1)-AMPK, and TGF-β1/Smads are potential therapy targeting using ginsenosides. Ginsenosides can play a targeting role and suppress chronic inflammatory response, collagen deposition, and epitheliale-mesenchymal transition (EMT), as well as myofibroblast activation to attenuate fibrosis. In this report, our aim was to focus on the therapeutic prospects of ginsenosides in fibrosis-related human diseases making use of results acquired from various animal models. These findings should provide important therapeutic clues and strategies for the exploration of new drugs for fibrosis treatment.

Clathrin and Lipid Raft-dependent Internalization of Porphyromonas gingivalis in Endothelial Cells

  • Kim, Sang-Yong;Kim, So-Hee;Choi, Eun-Kyoung;Paek, Yun-Woong;Kang, In-Chol
    • International Journal of Oral Biology
    • /
    • v.39 no.3
    • /
    • pp.131-136
    • /
    • 2014
  • Porphyromonas gingivalis is one of the most important periodontal pathogens and has been to known to invade various types of cells, including endothelial cells. The present study investigated the mechanisms involved in the internalization of P. gingivalis in human umbilical vein endothelial cells (HUVEC). P. gingivalis internalization was reduced by clathrin and lipid raft inhibitors, as well as a siRNA knockdown of caveolin-1, a principal molecule of lipid raft-related caveolae. The internalization was also reduced by perturbation of actin rearrangement, while microtubule polymerization was not required. Furthermore, we found that Src kinases are critical for the internalization of P. gingivalis into HUVEC, while neither Rho family GTPases nor phosphatidylinositol 3-kinase are required. Taken together, this study indicated that P. gingivalis internalization into endothelial cells involves clathrin and lipid rafts and requires actin rearrangement associated with Src kinase activation.

A simple guide to the structural study on membrane proteins in detergents using solution NMR

  • Sim, Dae-Won;Lee, Yoo-sup;Seo, Min-Duk;Won, Hyung-Sik;Kim, Ji-hun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.3
    • /
    • pp.137-142
    • /
    • 2015
  • NMR-based structural studies on membrane proteins are appreciated quite challenging due to various reasons, generally including the narrow dispersion of NMR spectra, the severe peak broadening, and the lack of long range NOEs. In spite of the poor biophysical properties, structural studies on membrane proteins have got to go on, considering their functional importance in biological systems. In this review, we provide a simple overview of the techniques generally used in structural studies of membrane proteins by solution NMR, with experimental examples of a helical membrane protein, caveolin 3. Detergent screening is usually employed as the first step and the selection of appropriate detergent is the most important for successful approach to membrane proteins. Various tools can then be applied as specialized NMR techniques in solution that include sample deteuration, amino-acid selective isotope labeling, residual dipolar coupling, and paramagnetic relaxation enhancement.

Carbachol-induced Phosphorylation of Phospholipase D1 through Protein Kinase C is required for the Activation in COS-7 cells

  • Lee, Byoung-Dae;Kim, Yong;Han, Jung-Min;Suh, Pann-Ghill;Ryu, Sung-Ho
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.182-187
    • /
    • 2001
  • Phospholiapse D (PLD), and phosphatidic acid generated by it, have been implicated in receptor-mediated intracellular signaling. Carbachol (CCh) is known to activate PLD1, and protein kinase C (PKC) is known to mediate in this signaling pathway In recent reports (Kim et al., 1999b; Kim et al., 2000), we published our observations of the direct phosphorylation of PLD1 by PKC and we described the phosphorylation-dependent regulation of PLD1 activity. In this study, we investigated the phasphorylation and compartmentalization of PLD1 in terms of CCh signaling in M3 muscarinic receptor (M3R)-expressing COS-7 cells. CCh treatment of COS-7 cells transiently coexpressing PLD1 and M3R stimulated PLD1 activity and induced direct phosphorylation of PLD1 by PKC. The CCh-induced activation and phosphorylation of PLD1 was completely blocked upon pretreatment of the cells with PKC-specific inhibitors. We looked at the localization of the PLD1 phosphorylation by PKC and found that PLD1 was mainly located in the caveolin-enriched membrane (CEM) fraction. Based on these results, we conclude that CCh induces the activation and phosphorylation of PLD1 via PKC and that the phosphorylation of PLD1 occurs in caveolae.

  • PDF