• Title/Summary/Keyword: cause of stress

Search Result 1,824, Processing Time 0.027 seconds

Effects of Stress, Resilience, and Focusing Manner on Quality of Life in Burn Rehabilitation Patients (재활치료 중인 화상 환자의 스트레스, 극복력, 포커싱적 태도가 삶의 질에 미치는 영향)

  • Shin, Jae Eun;Chae, Young Ran
    • Journal of muscle and joint health
    • /
    • v.30 no.3
    • /
    • pp.208-217
    • /
    • 2023
  • Purpose: The aim of this study was to investigate the degree of stress, resilience, focusing manner, and quality of life among burn rehabilitation patients. Furthermore, it seeks to identify factors affecting the quality of life in this patient group. Methods: The participants of this study were 129 burn patients, aged 19 or older, who received treatment at the rehabilitation of a university hospital in Seoul. Data were collected from June 22 to August 31, 2022 through self-report questionnaires covering stress, resilience, focusing manner and quality of life.The data were analyzed using the SPSS 29.0 program. Results: Multiple regression analysis showed that education level, cause of burn, area of burn, pain, stress, and focusing manner significantly affected the quality of life, explaining 74.5% of the variance. Conclusion: In particular, focusing manner was a major factor affecting the quality of life in burn rehabilitation patients. Therefore, there is a need to develop intervention programs aimed at increasing focusing manner in this patient group.

A STUDY ON THE EFFECT OF STRESS DISTRIBUTION OF MANDIBULAR IMPLANT BICORTICATION UTILIZING FINITE ELEMENT ALALYSIS METHOD (하악 임플란트 Bicortication 의 응력분산효과에 관한 유한요소분석적 연구)

  • Yi, Yang-Jin;Yang, Jae-Ho;Lee, Sun-Hyung;Chung, Hun-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.3
    • /
    • pp.517-538
    • /
    • 1995
  • Dental implantation is a method restoring missing teeth, especially in the case of severely resorbed edentulous patient. But the direct contact between bone and implant surface, induces stress concentration to the bone and eventually becomes a cause. The purpose of this study was to compare the stress distribution patterns between following two cylindrical implant models. One group has implant apex located in the inferior cortical bone and the other in the cancellous bone. Anterior edentulous mandible was modeled with two dimensional 953,878 nodes, 995,918 elements and compared the deflection and stress distribution under the 70 N,4 load cases for 26 models having variant mandibular height and length. The result were as follows; 1. The stress concentration was more affected by the height of the mandible than implant length. 2. Bicortication mitigates the stress of upper cortical and cancellous bone area at the same height of the mandible 3. Perforation of the inferior mandibular cortex significant stress concentration. 4. Stud type porstheses induced less stress concentration to the cortical and cancellous bone than bar type prostheses. 5. Stress of implant apex for stud type was larger than that of bar type.

  • PDF

Investigation of Residual Stress Characteristics of Specimen Fabricated by DED and Quenching Processes Using Thermo-mechanical Analysis (열-기계 연계 해석을 이용한 에너지 제어 용착 및 담금질 공정으로 제작된 시편의 잔류응력 특성 분석)

  • Hwang, An-Jae;Lee, Kwang-Kyu;Ahn, Dong-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.113-122
    • /
    • 2021
  • Complicated residual stress distributions occur in the vicinity of a deposited region via directed energy deposition (DED) process owing to the rapid heating and cooling cycle of the deposited region and the substrate. The residual stress can cause defects and premature failure in the vicinity of the deposited region. Several heat treatment technologies have been extensively researched and applied on the part deposited by the DED process to relieve the residual stress. The aim of this study was to investigate the residual stress characteristics of a specimen fabricated by DED and a quenching process using thermomechanical analyses. A coupled thermomechanical analysis technique was adopted to predict the residual stress distribution in the vicinity of the deposited region subsequent to the quenching step. The results of the finite element (FE) analyses for the deposition and the cooling measures show that the residual stress in the vicinity of the deposited region significantly increases after the completion of the elastic recovery. The results of the FE analyses for the heating and quenching stages further indicate that the residual stress in the vicinity of the deposited region remarkably increases at the initial stage of quenching. In addition, it is observed that the residual stress for quenching is lesser than that after the elastic recovery, irrespective of the deposited material.

The Distal Filling Effects on Hip Jont Function in Cementless Total Hip Replacement (인공 고관절 대치술에서 무시멘트형 스템의 원위부 압박이 고관철 성능에 미치는 영향)

  • 채수원;박상석;박재원
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2777-2785
    • /
    • 2000
  • In cementless total hip replacement(THR), an initial stability of the femoral component is important to long term fixation of femoral stem. The intial stability has close relationship with the relative displacement of prosthessis and sponge bone at the proximal of femur. After implantation of the proshesis, the surrounding bone is partially shielded from load carrying and starts to resorb. Stress shielding is the cause of the loss of proximal bone. Assessing stress distribution of femur is important to predict stress shielding. The initial stability and the stress shielding were investigated for two loading conditions approximating a single leg stance and a stair climbing. Three types of stems were studied by the finite element method to analyze the biomechanical effects of distal filling of cementless femoral stems. Three types of stems empolyed are a distal filling stem, a distal flexible stem, and a distal tapered stem.

Biomechanical characteristics of the distal filling effects in cementless femoral stem (무시멘트형 대퇴스템에서 원위부 압박 정도에 따른 생체역학적 특성)

  • Park, Sang-eok;Park, Jae-Won;Chae, Soo-Won
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.387-392
    • /
    • 2000
  • In cementless total hip replacement(THR), an initial stability of the femoral component is important to long term fixation of femoral stem. The initial stability has close relationship with the relative displacement of prosthesis and spongy bone at the proximal of femur. After implantation of the prosthesis. the surrounding bone is partially shielded from load carrying and starts to resort. Stress shielding is the cause of the loss of proximal bone. Assessing stress distribution of femur is important to predict stress shielding. The initial stability and the stress shielding were investigated for two loading conditions approximating a single leg stance and a stair climbing. Three types of stems were studied by the finite element method to analyze the biomechanical effects of distal filling of cementless femoral stems, Three types of stems employed are a distal filling stem, a distal flexible stem, and a distal tapered stem.

  • PDF

Development of Strength Evaluation System Using the Combined Grillage and Shell Element for the Strength around the Opening (골조구조 해석과 판 요소 해석의 결합을 활용한 개구부 강도평가 시스템 개발)

  • Kim, Sung-Chan;Lee, Kyung-Seok;Song, Jae-Young;Kim, Kyung-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.605-611
    • /
    • 2007
  • A ship is composed of many grillage structures especially the deck which is consists of primary girders, transverse and longitudinal members. Several holes are arranged on these primary members for pipes, vents, etc. which cause stress concentration due to the discontinuity of the member. It is not easy to get the stress values around all these holes because of the huge amount of time necessary for computations. In this paper, a simple method to compute for the stress around the holes is suggested. This method is composed of two steps which are grillage analysis for primary members and detailed stress analysis using the results of the grillage analysis. This method is made for the design of the primary members with openings supporting the deck structure.

Effect of Shaft Misalignment on Bending Strength of Helical Gear for Metro Vehicles (전동차용 헬리컬기어의 축 조립오차에 따른 굽힘강도의 영향)

  • Lee, Dong-Hyung;Choi, Don-Bum;Kang, Seong-Woong;Choi, Ha-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.64-72
    • /
    • 2022
  • Gear designers need to select the proper tolerances for deviations in both the center distance and parallelism of axes because these deviations cause high stresses and lead to fatigue breakage of the teeth. In this study, a three-dimensional finite element analysis model was developed for a helical gear used in metro vehicles, and a bending stress analysis method for gear pairs was established according to the contact position change. Using this model, the effect of shaft misalignment due to the center distance and shaft parallelism deviations on the bending stress of the gear was analyzed. As a result, the magnitude of the bending stress changed nearly linearly with the change in the center distance deviation. The tooth contact of the helical gear is biased toward the end of the tooth width when the parallelism deviations of the shaft occur, and the tooth root bending stress increases.

Design investigation of the stress reduction of bolted joint connection components in a large wind turbine blade (대형 풍력발전기 블레이드의 볼트체결부 응력감소를 위한 설계연구)

  • Kwang Tae Ha;June Hur;Jae-Ho Jeong
    • Journal of Wind Energy
    • /
    • v.13 no.4
    • /
    • pp.42-49
    • /
    • 2022
  • Today, the power capacity of a wind turbine and the size of a blade is increasing to capture more wind resources, reduce the number of wind turbines on a wind farm, and reduce the cost of energy. As the blade size becomes larger, attention is being paid to the structural integrity of the blade root connection due to the heavy gravitational load effect and increased aerodynamic loads on the large blade, which could cause catastrophic failure of the blade. Therefore, the secure bolted joint connection of the blade to the hub is very important. In this paper, attention was given to the stress concentration factor (SCF) at the first thread between the M42 bolt and nut. The effect of various design parameters on the stress concentration factor was investigated, which included nut type, nut height, and reduced shank bolt. From a close design investigation of the numerical results, it turned out that the use of a reduced shank bolt resulted in the largest reduction of the stress concentration factor by 40 %, and the round nut type also reduced the SCF by 10 %, which will be beneficial to large wind turbine blades over 100 meters.

Numerical simulation on the coupled chemo-mechanical damage of underground concrete pipe

  • Xiang-nan Li;Xiao-bao Zuo;Yu-xiao Zou;Yu-juan Tang
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.779-791
    • /
    • 2023
  • Long-termly used in water supply, an underground concrete pipe is easily subjected to the coupled action of pressure loading and flowing water, which can cause the chemo-mechanical damage of the pipe, resulting in its premature failure and lifetime reduction. Based on the leaching characteristics and damage mechanism of concrete pipe, this paper proposes a coupled chemo-mechanical damage and failure model of underground concrete pipe for water supply, including a calcium leaching model, mechanical damage equation and a failure criterion. By using the model, a numerical simulation is performed to analyze the failure process of underground concrete pipe, such as the time-varying calcium concentration in concrete, the thickness variation of pipe wall, the evolution of chemo-mechanical damage, the distribution of concrete stress on the pipe and the lifetime of the pipe. Results show that, the failure of the pipe is a coupled chemo-mechanical damage process companied with calcium leaching. During its damage and failure, the concentrations of calcium phase in concrete decrease obviously with the time, and it can cause an increase in the chemo-mechanical damage of the pipe, while the leaching and abrasion induced by flowing water can lead to the boundary movement and wall thickness reduction of the pipe, and it results in the stress redistribution on the pipe section, a premature failure and lifetime reduction of the pipe.

A Study of Irritable Bowel Syndrome and Stress on Female College Students in Korea (국내 여자 대학생에서 과민성 장증후군과 스트레스에 관한 연구)

  • Shin, Jieun;Kim, Kwang Joon;Bang, Joon Seok
    • Korean Journal of Clinical Pharmacy
    • /
    • v.29 no.3
    • /
    • pp.156-165
    • /
    • 2019
  • Objective: The purpose of this study was to provide a database for making better decisions of the treatment of the irritable bowel syndrome (IBS) patient, and for improving the recognition of IBS in the Korean society. Methods: The survey was conducted on 174 female college students in Korea from January 2017 to January 2018. Out of the total students surveyed, 160 questionnaires were analyzed after excluding 14 uncompleted questionnaires. Results: Based on the survey, the prevalence of IBS among female college students in Korea was found to be 13.8%. Statistically, the results proved that there were significant differences in the stress levels between the students with IBS and non-IBS diagnosed by ROME IV criteria. Students with IBS had higher stress levels than students without the ailment. Conclusions: Based on this study, stress management related treatment should be actively considered. Furthermore, it is necessary to develop more efficient and updated guidelines for the treatment of IBS and new patient care programs.