• Title/Summary/Keyword: cation exchange capacity (CEC)

Search Result 183, Processing Time 0.027 seconds

Contributions of Ionic Strength, pH, and Replacing Cations to the Cation Exchange Capacities of Soils (치환양(置換陽) ion의 종류(種類) 및 pH 가 토양(土壤)의 양(陽) ion 치환용량(置換容量)에 미치는 영향(影響))

  • Lim, Hyung-Sik;Kwag, Pan-Ju;Kim, Hee-Joong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.2
    • /
    • pp.114-124
    • /
    • 1984
  • Various methods for measuring cation exchange capacity (CEC) of soil were compared and the contributions of ionic strength, pH and replacing cations to the CEC were investigated on Kangweon soils (Pyeongchang soils derived from lime stone : Chuncheon, Weonseong soils from alluvium : Cheolweon soils from basalt). The results were as follows : 1. The CEC measuring method using shaker and centrifuge at saturating, washing and replacing precesses, which are common in determining CEC of soils, appeared to be superior to the other methods using column, filter, or Brown method. 2. For all soil samples, the higher the ionic strength, the higher CEC value was obtained with the fewer saturating processes. However, using monovalent saturating ion on Anmi series soil derived from lime stone, the CEC value decreased when the ionic strength and the number of saturating process increased. 3. The CEC value generally increased with increasing pH. But, Chuncheon soil (Gyuam series from alluvium) having higher Al content showed the abrupt increases of CEC from pH 5.5 to pH 7.5. 4. About 70% of CEC of Kangweon soils were attributed to organic matter. 5. In determining CEC of soils, saturating with 0.5M divalent cation solution 2 to 3 times for Pyeongchang and Weonseong soil, 3 to 4 times for Cheolweon soil, and replacing with 0.25M divalent cation solution about 3 times are thought to be recommendable.

  • PDF

Vegetation Structure and Soil Properties of Hemerocallis hongdoensis Population (홍도원추리(Hemerocallis hongdoensis Makino) 개체군의 식생구조와 토양특성)

  • Hwang, Yong;Kim, Mu-Yeol;Song, Ho-Kyung
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.6
    • /
    • pp.868-875
    • /
    • 2012
  • This study was carried out to analyze the vegetation properties, soil characteristics and ordination of Hemerocallis hongdoensis population in South Korea. The Hemerocallis hongdoensis population was classified into Mallotus japonicus dominant population, Viburnum wrightii dominant population, Melampyrum setaceum dominant population. Hemerocallis hongdoensis were mainly distributed along the coast of south-western iland of the Korean penninsula and it's population was located at an elevation of 6m to 362m. In the study sites, soil organic matter, total nitrogen, exchangeable potassium, exchangeable calcium, exchangeable magnesium, cation exchange capacity and soil pH were 16.18~21.70%, 0.56~0.97%, 0.42~0.88mg/kg, $3.38{\sim}5.65cmol^+/kg$, $1.12{\sim}2.38cmol^+/kg$, $25.93{\sim}41.45cmol^+/kg$, and 4.45~4.86 respectively. Mallotus japonicus dominant population was found in the steep sloped area that has high percentage of cation exchange capacity and total nitrogen than other populations. Viburnum wrightii dominant population was found gentle sloped area that has low percentage of cation exchange capacity and total nitrogen. Melampyrum setaceum dominant population was found in the medium sloped area that has medium percentage of cation exchange capacity and total nitrogen. Current status of Hemerocallis hongdoensis habitats is very vulnerable with local development constantly threatening the species' survival. Thus, concrete conservation plans to protect natural habitats should be set up as soon as possible.

Characteristics of Physical and Adsorption of Korean Traditional Charcoal (우리나라 전통 숯의 물리.화학적 특성)

  • Kim, Joon-Tae;Kim, Sun-Hwa;Kim, Hae-Jin
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.4 s.62
    • /
    • pp.77-86
    • /
    • 2006
  • The water purification was very important in Korea which has not sufficient water resource and while adsorption method among the various methods to eliminate the water pollutants has been widely used by activated carbon. This study was conducted the basic experiment for hall distribution, pH, conductivity, electronic microscope, cation exchange and inorganic materials the adsorption capacity of Korean traditional charcoal which has similar characteristics to activated carbon of organic pollutants. As a result of observing Korean traditional charcoal with electronic microscope, it was found that it has porous structure, oak charcoal has circular structure, pine charcoal has square structure and bamboo charcoal has hexagonal structure, which has high void fraction per unit area because of its thin cell wall structure. As a result of experimenting hall distribution, hall distribution of bamboo high temperature charcoal is high as 0.269cc/g and has the greatest inorganic contents and cation exchange capacity(CEC) which are the important factor of chemical adsorption.

Effect of a Hydrothermal Reaction on the Expandibility, Layer Charge, and CEC of Smectite Clay (스멕타이트 점토의 팽창도, 층전하, 양이온 교환능에 대한 열수반응의 영향)

  • Lee, Jae-Owan;Cho, Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.3
    • /
    • pp.173-179
    • /
    • 2010
  • In a HLW repository, the buffer is exposed to an elevated temperature due to a radioactive decay and geochemical conditions for a long time and such a hydrothermal condition may cause a significant loss of its barrier function. This study carried out hydrothermal tests with a domestic smectite clay to investigate the changes in the expandibility, layer charge, and cation exchange capacity of the smectite. When the temperature and potassium concentration in solution was increased for the hydrothermal treatments, the expandibility decreased, the layer charge negatively increased, and the CEC also decreased.

Influence of Physicochemical Properties on Cesium Adsorption onto Soil (토양의 물리화학적 특성이 세슘 흡착에 미치는 영향)

  • Park, Sang-Min;Lee, Jeshin;Kim, Young-Hun;Lee, Jeung-Sun;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.1
    • /
    • pp.27-32
    • /
    • 2017
  • Cesium (Cs) generated by nuclear accidents is one of the most hazardous radionuclides because of its gamma radiation and long half-life. Especially, when Cs is exposed on the soil environments, Cs is mainly adsorbed on the topsoil and is strongly combined with tiny soil particle including clay minerals. The adsorption of Cs onto soil can vary depending on various physicochemical properties of soil. In this study, the adsorption characteristics between soil and Cs were investigated according to various physicochemical properties of soil including organic matter contents, cation exchange capacity (CEC), soil particle size, and the types of clay minerals. Soil organic matter inhibited the adsorption of Cs onto the soil because organic matter was blocking the soil surface. In addition, it was estimated that the CEC of the soil influenced the adsorption of Cs onto the soil. Moreover, more Cs was adsorbed as the soil particles size decreased. It was estimated that Cs was mostly adsorbed onto the topsoil, this is related to the clay mineral. Therefore, soil organic matter, CEC, soil particle size, and clay minerals are considered the key factors that can influence the adsorption characteristics between soil and Cs.

Influence of the Starting Materials and Sintering Conditions on Composition of a Macroporous Adsorbent as Permeable Reactive Barrier (초기 소재와 소성조건이 투수반응벽체인 대공극흡착제 조상에 미치는 영향)

  • Chung, Doug-Young;Lee, Bong-Han;Jung, Jae-H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.239-248
    • /
    • 2009
  • In this investigation, we observed surface morphology and porosity of a macroporous adsorbent made of Na-bentonite and Ca-bentonite as structure formation materials and grounded waste paper as macropore forming material for the development of a permeable reactive barrier to remove heavy metals in groundwater. Therefore, we selected minerals having higher cation exchange capacity among 2:1 clay minerals and other industrial minerals because sintering can significantly influence cation exchange capacity, resulting in drastic decrease in removal of heavy metals. The results showed that the increasing sintering temperature drastically decreased CEC by less than 10 % of the indigenous CEC carried by the selected minerals. One axial compressibility test results showed that the highest value was obtained from 5% newspaper waste pulp for both structure formation materials of Na-bentonite and Ca-bentonite although there were not much difference in bulk density among treatments. The pore formation influenced by sintering temperature and period contributes removal of heavy metals passing through the sintered macroporous media having different water retention capacity.

Effects of Bentonite Illitization on Cesium Sorption (벤토나이트의 일라이트화에 의한 세슘 수착 특성 변화 연구)

  • Hwang, Jeonghwan;Choung, Sungwook;Han, Weon Shik;Yoon, Wonwoo
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.5
    • /
    • pp.29-38
    • /
    • 2021
  • This study investigated the mineralogical properties of bentonite and illite and evaluated the Cs sorption at various concentrations (Cw≈1-105 ㎍/L). Bentonite samples, collected from South Korea and USA, majorly consisted of Ca- and Na-montmorillonite, showed large cation exchange capacity (CEC, 91.4 and 47.3 meq/100 g) and specific surface area (SSA, 46.1 and 39.7 m2/g). In contrast, illite sample (USA) had relatively low values for 14.4 meq/100g of CEC and 29.3 m2/g of SSA, respectively. Bentonite and illite had different non-linear sorption for Cs along with Cw. At low Cw<10 ㎍/L, illite showed higher sorption capacity than bentonite despite low CEC because of the existence of specific sorption sites at the weathered mineral edge. However, as Cw increased, bentonite represented high sorption capacity because the cation exchange between Cs and interlayer cations was effective at high Cw conditions. These results implicated that the Cs concentration is important to evaluate the sorption performance of bentonite and illite. Finally, the Cuadros' kinetic model for illitization using various K concentrations (2×10-5 and 1.7×10-3 mol/L) and temperature (100-200℃) showed that up to 50% of the montmorillonite in bentonite could be converted to illite, suggesting that the illitization should be considered to evaluate the sorption performance of the bentonite in deep geological disposal repository.

Classification of Volcanic Ash Soils and contribution of Organic Matter and Clay to Cation Exchange Capacity (화산회토(火山灰土) 분류(分類) 및 CEC에 대(對)한 유기물(有機物)과 점토(粘土)의 기여도(寄與度))

  • Park, Chang-Seo;Kim, Lee-Yul;Cho, Seong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.2
    • /
    • pp.161-168
    • /
    • 1985
  • The 38 typical profiles representing volcanic ash soils (VAS) in Korea were subjected to multiple regression analysis to determine the relative contribution of organic matter (OM) and clay content to total cation-exchange capacity (CEC). This study, also, was examined the soil characteristics of VAS. VAS in Korea could be classified into 3 Orders, 5 Suborders, 8 Great groups, 15 Subgroups, 23 Families, and 38 Series. Total area of VAS was 139, 162ha and the most of them occured in Jeju Island. Simple correlation coefficients showed significance relations at OM-CEC and clay-CEC in top-soil of VAS. The partial regression coefficients indicated that CEC for each gram of OM as calculated to be 0.46 and 0.40 me per of topsoils for the black volcanic ash soils (BVAS) and the very dark brown volcanic ash soils (VDBVAS), respectively. The clay contributions of topsoils for BVAD and VDBVAS were 0.11 and 0.19 me. The standard partial regression coefficients appeared that OM content of topsoil for BVAS and VDBVAS was 2.97 and 1.23 times as important as clay content in predicting CEC.

  • PDF

A Study on the Correlations among the Physical and Chemical Properties of Soils in Korea (우리나라 토양(土壤)의 물리화학적(物理化學的) 특성(特性) 상호관계(相互關係)에 관(關)한 연구(硏究))

  • Jo, In-Sang;Hur, Bong-Koo;Kim, Lee-Yul;Cho, Seong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.2
    • /
    • pp.134-139
    • /
    • 1985
  • This study was designed to understand the relationships among the soil physical and chemical properties and to obtain the useful regression to calculate the cation exchange capacity, field capacity, wilting point moisture content and organic matter content. Fourteen soil properties were collected from 315 representative soil series in Korea. Simple and multiple regression were analyzed with the data by grouping land use, drainage class and soil depth. The multiple regression equations which can be calculated the cation exchange capacity from clay and organic matter content were found out. Cation exchange capacity of clay was 22me/100g, and that of organic matter was 103.3me/100g. Moisture retentions, both of wilting point moisture content and field capacity, were closely related to clay and organic matter content. The coefficient of clay was increased with drainage class changed more poor but the coefficient of organic matter was highest at moderately well drained soil. Organic matter content can be calculated by soil texture and pH. Organic matter content was decreased by in creasing the pH. The highly significant regressions were found between base saturation and pH.

  • PDF

A Study on the Effect of Metals on Bacteria Adhesion to Zeolite as Bio-media Materials (제올라이트를 이용한 생물막 형성시 미생물의 부착에 금속이 미치는 영향에 관한 연구)

  • Kim, Jae Keun;Park, In Sun;Park, Jae-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.303-310
    • /
    • 2009
  • Natural zeolite is widely used as sorbents and bio-media materials because it is cheap as well as it has efficient porous structures and large cation exchange. In this study, the effect of metal cations $(Na^+,\;Ca^{2+},\;Mg^{2+},\;Al^{3+})$ adsorbed to natural zeolite on the microorganism attachment was investigated. Metal-modified zeolites (MMZ) were prepared with 0.01 M, 0.02 M and 0.1 M NaCl, $CaCl_2$, $MgCl_2$ and $AlCl_3$ solutions respectively, which concentrations were equivalent to 10%, 20% and 100% of cation exchange capacity (CEC) of natural zeolite. Pseudomonas putida was used as microorganism which was cultivated in Beef Extract Medium at $26^{\circ}C$. The microorganism attachment to MMZ was increased more than natural zeolite. The amount of bacterial adhesion to MMZ and natural zeolite were $Mg^{2+}>natural>Na^+>Al^{3+}>Ca^{2+}$ under 10% of CEC, $Mg^{2+}>Ca^{2+}>Al^{3+}>natural>Na^+$ under 20% of CEC and $Ca^{2+}>Mg^{2+}>natural>Al^{3+}>Na^+$ under 100% of CEC. Especially, Mg-modified zeolite (Mg-MZ) showed the highest amount of bacterial adhesion, which increased the microorganism attachment 60% higher than natural zeolite under 10% of CEC. However, the amount of bacterial adhesion was decreased as the concentration of metal cations modified to zeolite were increased, showing that the increased amounts were 60% under 10% of CEC, 50% under 20% of CEC and 10% under 100% of CEC in Mg-MZ. Additionally, the effect of $Mg^{2+}$ in solution on the bacterial adhesion was investigated in order to compare it with the effect of $Mg^{2+}$ adsorbed to zeolite. The maximum quantity of bacterial adhesion to Mg-MZ was not different from the amount of microorganism attachment to the natural zeolite when $Mg^{2+}$ solution was added.