• 제목/요약/키워드: catenoid

검색결과 6건 처리시간 0.02초

ON MINIMAL SURFACES WITH GAUSSIAN CURVATURE OF BIANCHI SURFACE TYPE

  • Min, Sung-Hong
    • 충청수학회지
    • /
    • 제34권4호
    • /
    • pp.379-385
    • /
    • 2021
  • We consider the local uniqueness of a catenoid under the condition for the Gaussian curvature analogous to Bianchi surfaces. More precisely, if a nonplanar minimal surface in ℝ3 has the Gaussian curvature $K={\frac{1}{(U(u)+V(v))^2}}$ for any functions U(u) and V (v) with respect to a line of curvature coordinate system (u, v), then it is part of a catenoid. To do this, we use the relation between a conformal line of curvature coordinate system and a Chebyshev coordinate system.

UNIQUENESS OF FAMILIES OF MINIMAL SURFACES IN ℝ3

  • Lee, Eunjoo
    • 대한수학회지
    • /
    • 제55권6호
    • /
    • pp.1459-1468
    • /
    • 2018
  • We show that an umbilic-free minimal surface in ${\mathbb{R}}^3$ belongs to the associate family of the catenoid if and only if the geodesic curvatures of its lines of curvature have a constant ratio. As a corollary, the helicoid is shown to be the unique umbilic-free minimal surface whose lines of curvature have the same geodesic curvature. A similar characterization of the deformation family of minimal surfaces with planar lines of curvature is also given.

CIRCLE-FOLIATED MINIMAL SURFACES IN 4-DIMENSIONAL SPACE FORMS

  • PARK, SUNG-HO
    • 대한수학회보
    • /
    • 제52권5호
    • /
    • pp.1433-1443
    • /
    • 2015
  • Catenoid and Riemann's minimal surface are foliated by circles, that is, they are union of circles. In $\mathbb{R}^3$, there is no other nonplanar example of circle-foliated minimal surfaces. In $\mathbb{R}^4$, the graph $G_c$ of w = c/z for real constant c and ${\zeta}{\in}\mathbb{C}{\backslash}\{0}$ is also foliated by circles. In this paper, we show that every circle-foliated minimal surface in $\mathbb{R}$ is either a catenoid or Riemann's minimal surface in some 3-dimensional Affine subspace or a graph surface $G_c$ in some 4-dimensional Affine subspace. We use the property that $G_c$ is circle-foliated to construct circle-foliated minimal surfaces in $S^4$ and $H^4$.

SYMMETRY AND UNIQUENESS OF EMBEDDED MINIMAL HYPERSURFACES IN ℝn+1

  • Park, Sung-Ho
    • 대한수학회보
    • /
    • 제58권1호
    • /
    • pp.21-30
    • /
    • 2021
  • In this paper, we prove some rigidity results about embedded minimal hypersurface M ⊂ ℝn+1 with compact ∂M that has one end which is regular at infinity. We first show that if M ⊂ ℝn+1 meets a hyperplane in a constant angle ≥ ��/2, then M is part of an n-dimensional catenoid. We show that if M meets a sphere in a constant angle and ∂M lies in a hemisphere determined by the hyperplane through the center of the sphere and perpendicular to the limit normal vector nM of the end, then M is part of either a hyperplane or an n-dimensional catenoid. We also show that if M is tangent to a C2 convex hypersurface S, which is symmetric about a hyperplane P and nM is parallel to P, then M is also symmetric about P. In special, if S is rotationally symmetric about the xn+1-axis and nM = en+1, then M is also rotationally symmetric about the xn+1-axis.

막구조물의 형상탐색 및 최적재단도 해석기법에 관한 연구 (A Study on the Form Finding and Optimal Cutting Pattern Analysis Technique of Membrane Structures)

  • 서삼열
    • 한국전산구조공학회논문집
    • /
    • 제12권3호
    • /
    • pp.457-464
    • /
    • 1999
  • 본 논문의 목적은 막구조물의 형상해석, 응력-변형 해석, 재단도 해석을 수행하는 것이고, 재료는 선형탄성, 응력은 평면응력의 상태로 가정한다. 케이블 및 막구조물은 외력에 대한 변형이 매우 큰 구조물이기 때문에 기하비선형을 고려한 비선형해석을 하여야 한다 해석은 일반적인 구조물과는 달리 다음의 3단계로 구성된다. 첫 번째 단계는 초기 평형형상을 결정하기 위한 형상해석이고, 두 번째 단계는 다양한 외력이 가해졌을 때 구조물의 거동을 파악하는 응력-변형 해석이다. 이렇게 하여 일단 만족된 형상이 얻어지면 형상해석에서 얻은 결과를 기초로 하여 시공적 관점의 재단도 해석이 수행된다. 본 논문에서는 서귀포 월드컵 축구 경기장 지붕 구조물의 예를 들어 형상해석, 응력-변형 해석, 재단도 해석을 수행하고, 카테노이드(Catenoid) 구조물을 이용하여 최적재단도에 관한 해석기법을 제시한다.

  • PDF

FINITE TYPE OF THE PEDAL OF REVOLUTION SURFACES IN E3

  • Abdelatif, Mohamed;Alldeen, Hamdy Nour;Saoud, Hassan;Suorya, Saleh
    • 대한수학회지
    • /
    • 제53권4호
    • /
    • pp.909-928
    • /
    • 2016
  • Chen and Ishikawa studied the surfaces of revolution of the polynomial and the rational kind of finite type in Euclidean 3-space $E^3$ [10]. Here, the pedal of revolution surfaces of the polynomial and the rational kind are discussed. Also, as a special case of general revolution surfaces, the sphere and catenoid are studied for the kind of finite type.