• Title/Summary/Keyword: catenin

Search Result 334, Processing Time 0.025 seconds

Study of the Expression of E-cadherin, $\beta$-catenin, and c-Met in Gastric Adenocarcinomas (위 선암종에서의 E-cadherin, $\beta$-catenin 및 c-Met 단백 발현에 대한 연구)

  • Cho Seong Jin;Kim Min Kyung;Shin Bong Kyung;Min Youn Ki;Cho Min Young;Suh Sung Ock;Won Nam Hee;Chae Yang Seok
    • Journal of Gastric Cancer
    • /
    • v.1 no.2
    • /
    • pp.92-99
    • /
    • 2001
  • Purpose: E-cadherin is an adhesion molecule essential for tight connection between cells, forming the cadherin/catenin complex. Truncated $\beta$-catenin disrupts the interaction between E-cadherin and $\alpha$-catenin, leading to the loss of intercellular adhesion. Met protein, the hepatocyte growth factor receptor, plays important roles in signal transduction. We investigated the relationships between the expressions of E-cadherin, $\beta$-catenin, and c-met protein and the clinicopathological and prognostic parameters in gastric adenocarcinomas. Materials and Methods: The patterns of E-cadherin, $\beta$-catenin, and c-met protein expression were studied using immunohistochemistry in formalin-fixed, paraffin-embedded archival tissues from 76 surgically resected gastric adenocarcinomas. Results: Increased expressions of E-cadherin, $\beta$-catenin, and c-met were more significantly correlated in early gastric cancers (EGC) than in advanced gastric cancers (AGC) (P=0.002, P=0.003 and P=0.026). The positive immunoreactivities of all three markers were markedly lower in signet ring-cell type and poorly differentiated type lesions than in intestinal-type lesions. Decreased expression of the $\beta$-catenin protein correlated well with increased tumor invasion depth (P=0.039), and increased lymph node metastasis correlated well with reduced expression of c-met (P=0.046). Conclusion: In gastric cancers, reduced expressions of the E-cadherin, $\beta$-catenin, and c-met proteins may play some role in poorer tumor differentiation, deeper tumor invasion, and increased lymph node metastasis. Also, the c-met gene is thought to play a specific role in the mechanism of the yet unknown catenin action.

  • PDF

Anti-Cancer Activity of the Leave Extracts of Rodgersia podophylla through β-catenin Proteasomal Degradation in Human Cancer Cells (도깨비부채(Rodgersia podophylla) 잎 추출물의 인간 암세포의 β-catenin 분해 유도 활성)

  • Kim, Ha Na;Kim, Jeong Dong;Son, Ho-Jun;Park, Gwang Hun;Eo, Hyun Ji;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.32 no.5
    • /
    • pp.442-447
    • /
    • 2019
  • In this study, we evaluated the effect of Rodgersia podophylla leave extracts (RPL) on ${\beta}-catenin$ level in human cancer cells. RPL dose-dependently inhibited cell proliferation in SW480, A549, MDA-MB-231, PC-3 and AsPC-1 cells. RPL dramatically decreased ${\beta}-catenin$ protein level in all cancer cells. However, decreased level of ${\beta}-catenin$ mRNA expression was observed in A549 and AsPC-1 cells. In addition, RPL dramatically attenuated cyclin D1 mRNA expression in all cancer cells. MG132 decreased the downregulation of ${\beta}-catenin$ protein level induced by RPL in all cancer cells, while RPL-induced downregulation of ${\beta}-catenin$ was inhibited by the inhibition of $GSK-3{\beta}$ by LiCl in MDA-MB-231 cells. RPL phosphorylated ${\beta}-catenin$ and $GSK-3{\beta}$. In addition, the inhibition of $GSK-3{\beta}$ by LiCl attenuated RPL-induced ${\beta}-catenin$ phosphorylation. Based on these findings, RPL may be a potential candidate for the development of chemopreventive or therapeutic agents for human cancer.

Parkin-induced Decrease of ${\beta}$-catenin is Mediated by Protein Kinase C in TNF-${\alpha}$-treated HeLa Cells

  • Lee, Min Ho;Jung, Byung Chul;Kim, Sung Hoon;Lee, Juyeon;Jung, Dongju;Cho, Jang-Eun;Rhee, Ki-Jong;Kim, Yoon Suk
    • Biomedical Science Letters
    • /
    • v.19 no.2
    • /
    • pp.83-89
    • /
    • 2013
  • Parkin is a protein known to have tumor suppressive functions. In a previous study, we determined that Parkin expression restores susceptibility to TNF-${\alpha}$-induced death in HeLa cells. ${\beta}$-catenin is a key protein in the Wnt signaling pathway and excessive activation of the ${\beta}$-catenin pathway can promote cancer development. In this study, we found that ${\beta}$-catenin levels decreased dramatically in Parkin over-expressing HeLa cells treated with TNF-${\alpha}$. We used chemical inhibitors of cell signaling pathways to identify the signaling molecules involved in ${\beta}$-catenin down-regulation. Our results indicate that the PKC inhibitor (RO-31-7549) blocked parkin-induced down-regulation of ${\beta}$-catenin. We also show that Parkin-induced decrease in cell viability in TNF-${\alpha}$-treated HeLa cells is alleviated upon treatment with a PKC inhibitor. Taken together, these results suggest the possibility that ${\beta}$-catenin reduction may be associated with Parkin-induced decrease of cell viability in TNF-${\alpha}$ treated HeLa cells.

Clinical Significance of Axin and β-catenin Protein Expression in Primary Hepatocellular Carcinomas

  • Guan, Cheng-Nong;Chen, Xin-Ming;Lou, Hai-Qing;Liao, Xiang-Hui;Chen, Bao-Ying;Zhang, Pei-Weng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.677-681
    • /
    • 2012
  • The aim of the present research was to investigate clinicopathologic correlations of immunohistochemically-demonstrated axin (axis inhibition) and ${\beta}$-catenin expression in primary hepatocellular carcinomas (HCCs), in comparison with paraneoplastic, cirrhotic and normal liver tissues. Variation in Axin expression across groups were significant (P < 0.01), correlating with alpha fetoprotein (AFP), HBsAg, cancer plugs in the portal vein, and clinical stage of HCCs(P < 0.05); however, there were no links with sex, age, and tumour size (P > 0.05). Differences in cell membrane ${\beta}$-catenin expression were also statistically significant (P < 0.01), again correlated with AFP, HBsAg, cancer plugs in the portal vein, and clinical stage in HCCs (P < 0.05) but not with sex, age, and tumour size (P > 0.05). Axin expression levels in tissues with reduced membrane ${\beta}$-catenin were low (P < 0.05), also being low with nuclear ${\beta}$-catenin expression (P < 0.05). Axin and ${\beta}$-catenin may play an important role in the genesis and progression of HCC via the Wnt signal transmission pathway. Simultaneous determination of axin, ${\beta}$-catenin, AFP, and HBsAg may be useful for early diagnosis, and metastatic and clinical staging of HCCs.

E-cadherin and $\beta-catenin$ Expression and Mutation in Gastric Carcinomas (위암에서 E-cadherin과 $\beta-catenin$ 발현과 유전자 돌연변이에 관한 연구)

  • Kim Kwang Il;Park Sung-Hye;Han Sun-Ae;Chae Yang-Seok;Kim Insun
    • Journal of Gastric Cancer
    • /
    • v.1 no.4
    • /
    • pp.202-209
    • /
    • 2001
  • Purpose: When cancer cels invade the stroma, they should be dissociated from the adjacent cells at first. E-cadherin and $\beta-catenin$ constitute an important protein complex associated with cellular adhesion, development, and differentiation, especially in epithelial cells. The role of E-cadherin and $\beta-catenin$ in gastric carcinogenesis were studied. Materials and Methods: The expression of E-cadherin and $\beta-catenin$ in gastric adenocarcinomas by using immunohistochemical staining and the mutation by using polymerase chain reaction- single stranded conformation polymorphism (PCR-SSCP) and sequencing were performed in 40 adenocarcinomas and 5 dysplasia of stomach. Thirteen cases, which had lymph node metastasis, were also included for immunohistochemical staining. Results: Inappropriate cytoplasmic and/or nuclear expression of a E-cadherin-$\beta-catenin$ complex was more frequent in poorly differentiated, diffuse type signet ring cell carcinomas than in well-differentiated, intestinal type adenocarcinomas (P<0.05). However, the expression was not related with clinical stage or lymph node metastasis. Mutation of E-cadherin was detected in 4 cases by using PCR-SSCP, whereas mutation of $\beta-catenin$ was detected in 2 cases. Conclusion: E-cadherin and $\beta-catenin$ seem to be important in gastric carcinogenesis, especially in poorly differentiated diffuse type.

  • PDF

Opisthorchis viverrini Infection Activates the PI3K/AKT/PTEN and Wnt/β-catenin Signaling Pathways in a Cholangiocarcinogenesis Model

  • Yothaisong, Supak;Thanee, Malinee;Namwat, Nisana;Yongvanit, Puangrat;Boonmars, Thidarut;Puapairoj, Anucha;Loilome, Watcharin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10463-10468
    • /
    • 2015
  • Opisthorchis viverrini (Ov) infection is the major etiological factor for cholangiocarcinoma (CCA), especially in northeast Thailand. We have previously reported significant involvement of PI3K/AKT/PTEN and $Wnt/{\beta}$-catenin in human CCA tissues. The present study, therefore, examined the expression and activation of PI3K/AKT/PTEN and $Wnt/{\beta}$-catenin signaling components during Ov-induced cholangiocarcinogenesis in a hamster animal model. Hamsters were divided into two groups; non-treated and Ov plus NDMA treated. The results of immunohistochemical staining showed an upregulation of PI3K/AKT signaling as determined by elevated expression of the $p85{\alpha}$-regulatory and $p110{\alpha}$-catalytic subunits of PI3K as well as increased expression and activation of AKT during cholangiocarcinogenesis. Interestingly, the staining intensity of activated AKT (p-AKT) increased in the apical regions of the bile ducts and strong staining was detected where the liver fluke resides. Moreover, PTEN, a negative regulator of PI3K/AKT, was suppressed by decreased expression and increased phosphorylation during cholangiocarcinogenesis. We also detected upregulation of $Wnt/{\beta}$-catenin signaling as determined by increased positive staining of Wnt3, Wnt3a, Wnt5a, Wnt7b and ${\beta}$-catenin, corresponded with the period of cholangiocarcinogenesis. Furthermore, nuclear staining of ${\beta}$-catenin was observed in CCA tissues. Our results suggest the liver fluke infection causes chronic inflammatory conditions which lead to upregulation of the PI3K/AKT and $Wnt/{\beta}$-catenin signaling pathways which may drive CCA carcinogenesis. These results provide useful information for drug development, prevention and treatment of CCA.

Tumor necrosis factor-inducible gene 6 interacts with CD44, which is involved in fate-change of hepatic stellate cells

  • Wang, Sihyung;Kim, Jieun;Lee, Chanbin;Jung, Youngmi
    • BMB Reports
    • /
    • v.53 no.8
    • /
    • pp.425-430
    • /
    • 2020
  • Tumor necrosis factor-inducible gene 6 protein (TSG-6) is a cytokine secreted by mesenchymal stem cells (MSCs) and regulates MSC stemness. We previously reported that TSG-6 changes primary human hepatic stellate cells (pHSCs) into stem-like cells by activating yes-associated protein-1 (YAP-1). However, the molecular mechanism behind the reprogramming action of TSG-6 in pHSCs remains unknown. Cluster of differentiation 44 (CD44) is a transmembrane protein that has multiple functions depending on the ligand it is binding, and it is involved in various signaling pathways, including the Wnt/β-catenin pathway. Given that β-catenin influences stemness and acts downstream of CD44, we hypothesized that TSG-6 interacts with the CD44 receptor and stimulates β-catenin to activate YAP-1 during TSG-6-mediated transdifferentiation of HSCs. Immunoprecipitation assays showed the interaction of TSG-6 with CD44, and immunofluorescence staining analyses revealed the colocalization of TSG-6 and CD44 at the plasma membrane of TSG-6-treated pHSCs. In addition, TSG-6 treatment upregulated the inactive form of phosphorylated glycogen synthase kinase (GSK)-3β, which is a negative regulator of β-catenin, and promoted nuclear accumulation of active/nonphosphorylated β-catenin, eventually leading to the activation of YAP-1. However, CD44 suppression in pHSCs following CD44 siRNA treatment blocked the activation of β-catenin and YAP-1, which inhibited the transition of TSG-6-treated HSCs into stem-like cells. Therefore, these findings demonstrate that TSG-6 interacts with CD44 and activates β-catenin and YAP-1 during the conversion of TSG-6-treated pHSCs into stem-like cells, suggesting that this novel pathway is an effective therapeutic target for controlling liver disease.

Down-regulation of EZH2 by RNA Interference Inhibits Proliferation and Invasion of ACHN Cells via the Wnt/β-catenin Pathway

  • Yuan, Jun-Bin;Yang, Luo-Yan;Tang, Zheng-Yan;Zu, Xiong-Bing;Qi, Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6197-6201
    • /
    • 2012
  • Although enhancer of zeste homolog 2 (EZH2) has been reported as an independent prognostic factor in renal cell carcinoma (RCC), little is known about the exact mechanism of EZH2 in promoting the genesis of RCC. However, several studies have shown that dysregulation of the Wnt/${\beta}$-catenin signaling pathway plays a crucial role. Therefore, we determined whether EZH2 could affect ACHN human RCC cell proliferation and invasion via the Wnt/${\beta}$-catenin pathway. In the present study, we investigated the effects of short interfering RNA (siRNA)-mediated EZH2 gene silencing on Wnt/${\beta}$-catenin signaling in ACHN cells. EZH2-siRNA markedly inhibited the proliferation and invasion capabilities of ACHN, while also reducing the expression of EZH2, Wnt3a and ${\beta}$-catenin. In contrast, cellular expression of GSK-$3{\beta}$ (glycogen synthase kinase-$3{\beta}$), an inhibitor of the Wnt/${\beta}$-catenin pathway, was conspicuously higher after transfection of EZH2 siRNA. These preliminary findings suggest EZH2 may promote proliferation and invasion of ACHN cells via action on the Wnt/${\beta}$-catenin signaling pathway.

Effect on Wnt/β-catenin Pathway of Methanol Extracts from Native Plants in Korea (국내자생식물 메탄올추출물의 Wnt/β-catenin 신호전달체계에 대한 효과)

  • Kim, Bora;Kim, Hyun-Soo
    • Korean Journal of Plant Resources
    • /
    • v.29 no.5
    • /
    • pp.620-624
    • /
    • 2016
  • The Wnt/β-catenin signaling pathway is mandatory in adipogenesis. In this study, we investigated the applicability of functional materials for the treatment of obesity by examining Wnt/β-catenin pathway reporter activity related to adipocyte differentiation inhibiting with korean native plant extracts. The luciferase activity of HEK 293-TOP cells increased the reporter activity approximately 152% and 130% by treatment with Sanguisorba officinalis and Thuja orientalis, respectively. Ricinus communis were represented about 90% higher activity, two samples(Rosa rugosa and Sophorae Flos) showed 80% higher activity than the control. Three samples of plant extracts (Zanthoxylum piperitum, Pueraria thunbergiana, Solanum nigrum) were about 70% higher activity compared with the non-treated control. Cytotoxicity of plant extracts was not detected in the rat neural stem cells. These results suggest that the selected eight plant extracts are safe compounds. Our findings indicate that Wnt/β-catenin pathway reporter activity could be used for high throughput screening system. In addition, the plant extracts selected as candidates for adipocyte differentiation inhibiting may be potential therapeutic agents for obesity, it will be exploring the possibility of developing an anti-obesity materials through further experiments with selected plant extracts.

SDC4 Gene Silencing Favors Human Papillary Thyroid Carcinoma Cell Apoptosis and Inhibits Epithelial Mesenchymal Transition via Wnt/β-Catenin Pathway

  • Chen, Liang-Liang;Gao, Ge-Xin;Shen, Fei-Xia;Chen, Xiong;Gong, Xiao-Hua;Wu, Wen-Jun
    • Molecules and Cells
    • /
    • v.41 no.9
    • /
    • pp.853-867
    • /
    • 2018
  • As the most common type of endocrine malignancy, papillary thyroid cancer (PTC) accounts for 85-90% of all thyroid cancers. In this study, we presented the hypothesis that SDC4 gene silencing could effectively attenuate epithelial mesenchymal transition (EMT), and promote cell apoptosis via the $Wnt/{\beta}-catenin$ signaling pathway in human PTC cells. Bioinformatics methods were employed to screen the determined differential expression levels of SDC4 in PTC and adjacent normal samples. PTC tissues and adjacent normal tissues were prepared and their respective levels of SDC4 protein positive expression, in addition to the mRNA and protein levels of SDC4, $Wnt/{\beta}-catenin$ signaling pathway, EMT and apoptosis related genes were all detected accordingly. Flow cytometry was applied in order to detect cell cycle entry and apoptosis. Finally, analyses of PTC migration and invasion abilities were assessed by using a Transwell assay and scratch test. In PTC tissues, activated $Wnt/{\beta}-catenin$ signaling pathway, increased EMT and repressed cell apoptosis were determined. Moreover, the PTC K1 and TPC-1 cell lines exhibiting the highest SDC4 expression were selected for further experiments. In vitro experiments revealed that SDC4 gene silencing could suppress cell migration, invasion and EMT, while acting to promote the apoptosis of PTC cells by inhibiting the activation of the $Wnt/{\beta}-catenin$ signaling pathway. Besides, $si-{\beta}-catenin$ was observed to inhibit the promotion of PTC cell migration and invasion caused by SDC4 overexpression. Our study revealed that SDC4 gene silencing represses EMT, and enhances cell apoptosis by suppressing the activation of the $Wnt/{\beta}-catenin$ signaling pathway in human PTC.