• Title/Summary/Keyword: catamaran

Search Result 107, Processing Time 0.039 seconds

The Comparison of Seakeeping Performance Analysis Methods for a High Speed Catamaran (Strip and 3-D Panel Method) (초고속 쌍동선에 대한 내항성능 해석 방법 비교 (스트립 방법과 3-D Panel 방법))

  • Lee, Ho-Young;Song, Ki-Jong;Yum, Deuk-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.127-138
    • /
    • 1996
  • The strip method, unified theory and 3-D panel method are commonly used methods for the seakeeping analysis of high-speed vessels. The strip method which is basically 2-dimensional method is known to give incorrect hydrodynamic coefficients and motion responses for the cases of high speed and low frequency region. And the unified theory which uses two dimensional approach in inner domain and slender body theory in outer domain is very complicate in computational modelling. Though the 3-D panel method requires comparatively long computation time, it is believed that the method gives good results without any limitation in ship speed and range of frequency for computation. In the 3-D panel method the source singularity representing translating and pulsating Green function is used and Hoff's method is adopted for the numerical calculation of the Green function. The computation time can be reduced by using the symmetry relationship with respect to longitudinal axis. In this paper the strip method and the 3-D panel method are compared for the seakeeping analysis of a high-speed catamaran. The Compared items are the hydrodynamic coefficients, wave exciting forces, frequency response functions and short-term responses in irregular waves.

  • PDF

A Study on the Optimization of Main Dimensions of a Ship by Design Search Techniques based on the AI (AI 기반 설계 탐색 기법을 통한 선박의 주요 치수 최적화)

  • Dong-Woo Park;Inseob Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1231-1237
    • /
    • 2022
  • In the present study, the optimization of the main particulars of a ship using AI-based design search techniques was investigated. For the design search techniques, the SHERPA algorithm by HEEDS was applied, and CFD analysis using STAR-CCM+ was applied for the calculation of resistance performance. Main particulars were automatically transformed by modifying the main particulars of the ship at the stage of preprocessing using JAVA script and Python. Small catamaran was chosen for the present study, and the main dimensions of the length, breadth, draft of demi-hull, and distance between demi-hulls were considered as design variables. Total resistance was considered as an objective function, and the range of displaced volume considering the arrangement of the outfitting system was chosen as the constraint. As a result, the changes in the individual design variables were within ±5%, and the total resistance of the optimized hull form was decreased by 11% compared with that of the existing hull form. Throughout the present study, the resistance performance of small catamaran could be improved by the optimization of the main dimensions without direct modification of the hull shape. In addition, the application of optimization using design search techniques is expected for the improvement in the resistance performance of a ship.

A Study on the Self-Propulsion CFD Analysis for a Catamaran with Asymmetrical Inside and Outside Hull Form (안팎 형상이 비대칭인 쌍동선의 자항성능 CFD 해석에 관한 연구)

  • Jonghyeon Lee;Dong-Woo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.108-117
    • /
    • 2024
  • In this study, simulations based on computational fluid dynamics were performed for self-propulsion performance prediction of a catamaran that has asymmetrical inside and outside hull form and numerous knuckle lines. In the simulations, the Moving Reference Frame (MRF) or Sliding Mesh (SDM) techniques were used, and the rotation angle of the propeller per time step was different to identify the difference using the analysis technique and condition. The propeller rotation angle used in the MRF technique was 1˚ and those used in the SDM technique were 1˚, 5˚, or 10˚. The torque of the propeller was similar in both the techniques; however, the thrust and resistance of the hull were computed lower when the SDM technique was applied than when the MRF technique was applied, and higher as the rotation angle of the propeller per time step in the SDM technique was smaller in the simulations for several revolutions of the propeller to estimate the self-propulsion condition. The revolutions, thrust, and torque of the propeller in the self-propulsion condition obtained using linear interpolation and the delivered power, wake fraction, thrust deduction factor, and revolutions of the propeller obtained using the full-scale prediction method showed the same trend for both the techniques; however, most of the self-propulsion efficiency showed the opposite trend for these techniques. The accuracy of the propeller wake was low in the simulations when the MRF technique was applied, and slight difference existed in the expression of the wake according to the rotation angle of the propeller per time step when the SDM technique was applied.

A RANS CFD Based Approach for Resistance, Maneuvering and Seakeeping

  • Sasanapuri, Balasubramanyam;Wilson, Wesley;Rhee, Shin-Hyung
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.4
    • /
    • pp.55-71
    • /
    • 2007
  • The primary objective of this work is to develop methodologies for virtual model basin and to demonstrate the capabilities for generic multi-hull ship geometry. A computational fluid dynamics approach is used to simulate various model basin tests for steady resistance, maneuvering and seakeeping. For a catamaran hull configuration, the methodologies are used for solving these problems and the results are discussed. Computational results are compared with the results of a benchmarked potential flow theory method for calm water resistance.

Study of Shipbuilding Cost Estimation for Catamaran-type Leisure Boats Using Product Configuration Model (제품구성모델을 이용한 쌍동형 레저보트 건조공수 추정 연구)

  • Oh, Dae Kyun;Oh, Woo Jun;Lee, Dong Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.911-916
    • /
    • 2014
  • The leisure boat industry has the potential to become a high-value-added industry in the future. Recently, a study on Korean high-speed leisure boats for fishing was conducted. This study suggests a product configuration model-based shipbuilding cost estimation method for determining the type of leisure boat suitable for mass production, as part of a research for productivity improvement. The suggested estimation method based on the analysis of the leisure boat process and generic YWBS can calculate quantitative and concrete data. By using this method, the cost of building the catamaran-type design ship can be reduced by 17 times, compared to that of the monohull-type mother ship. This implies that the final design of the Korean high-speed leisure boat for fishing will have a competitive price at the actual production stage.

Evaluation of Structural Integrity of the ISO-based Moon Pool Type Diver Boats (ISO 기반 Moon Pool형 다이버 보트 구조 건전성 평가)

  • Kang, Byoung-mo;Oh, Woo-jun;Na, Hyun-ho;Choi, Ju-seok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.597-603
    • /
    • 2018
  • This Study investigates the Structural Integrity of Boats for Divers, given increased demands for Underwater and Recreational use. We conducted research on a Small Catamaran with a Moon Pool in the center of the Hull, using the Finite Element Method to calculate allowable stress based on the ISO Rule. We computed the coefficients defined in ISO 12215-5 and TC118.1225-7, and determined the suitability of using the ISO Standard and Allowable Stress Design method (ASD) by applying Longitudinal Bending Moment, Torsional moment, and Bottom Slamming Load. We also applied the Ultimate Strength Design Method (LFRD) using Finite Element Analysis (FEA). As a Result of this Research, it was found that ships with a Moon Pool do have Structural Integrity according to their Design in accordance with ISO and KR Regulations.

A Study on the Trim and Resistance of Small Catamaran Using Numerical Analysis and a Model Test (수치해석 및 시험을 통한 소형 쌍동선의 종경사 및 저항 연구)

  • Kim, Jung-eun;Oh, Woo-jun;Hong, Chun-beom;Kim, Do-jung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.591-596
    • /
    • 2018
  • In Designing a Small Ship, the Design of the Trim for Sailing has a great influence on the Stability of the Ship as well as Resistance. The Center of Gravity of a Ship is mostly determined during Initial Design. This Study confirms the Effect of Trim on changes in Vertical Center of Gravity by Numerical Analysis for a Small Catamaran. The Results were examined in a Model test. However, No Model tests were conducted while varying the changes in Vertical Center of Gravity. Nonetheless, Investigation was completed for the Purpose of presenting Vertical Center of Gravity results according to plans for the Trim during Initial Design of a Small Ship. In order to verify the Results of Numerical Analysis, a Comparison with Experimental results was carried out. Alternation of Trim angle and Resistance performance according to changes in the Center of Gravity were studied.