• Title/Summary/Keyword: catalytic subunit

Search Result 141, Processing Time 0.028 seconds

The Gene fpk1, Encoding a cAMP-dependent Protein Kinase Catalytic Subunit Homolog, is Required for Hyphal Growth, Spore Germination, and Plant Infection in Fusarium verticillioides

  • Pei-Bao, Zhao;Ren, Ai-Zhi;Xu, Hou-Juan;Li, Duo-Chuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.208-216
    • /
    • 2010
  • Fusarium verticillioides is an important pathogen of maize, being responsible for ear rots, stalk rots, and seedling blight worldwide. During the past decade, F. verticillioides has caused several severe epidemics of maize seedling blight in many areas of China, which lead to significant losses. In order to understand the molecular mechanisms regulating fungal development and pathogenicity in this pathogen, we isolated and characterized the gene fpk1 (GenBank Accession No. EF405959) encoding a homolog of the cAMP-dependent protein kinase catalytic subunit, which included a 1,854-bp DNA sequence from ATG to TAA, with a 1,680-bp coding region, and three introns (lengths: 66 bp, 54 bp, and 54 bp), and the predicated protein precursor had 559 aa. The mutant ${\Delta}fpk1$, which was disrupted of the fpkl gene, showed reduced vegetative growth, fewer and shorter aerial mycelia, strongly impaired conidiation, and reduced spore germination rate. After germinating, the fresh hypha was stubby and lacking of branch. When inoculated in susceptible maize varieties, the infection of the mutant ${\Delta}fpk1$ was delayed and the infection efficiency was reduced compared with that of the wild-type strain. AU this indicated that gene fpk1 participated in hyphal growth, conidiophore production, spore germination, and virulence in F. verticillioides.

Galangin Activates the ERK/AKT-Driven Nrf2 Signaling Pathway to Increase the Level of Reduced Glutathione in Human Keratinocytes

  • Hewage, Susara Ruwan Kumara Madduma;Piao, Mei Jing;Kang, Kyoung Ah;Ryu, Yea Seong;Fernando, Pattage Madushan Dilhara Jayatissa;Oh, Min Chang;Park, Jeong Eon;Shilnikova, Kristina;Moon, Yu Jin;Shin, Dae O;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.427-433
    • /
    • 2017
  • Previously, we demonstrated that galangin (3,5,7-trihydroxyflavone) protects human keratinocytes against ultraviolet B (UVB)-induced oxidative damage. In this study, we investigated the effect of galangin on induction of antioxidant enzymes involved in synthesis of reduced glutathione (GSH), and investigated the associated upstream signaling cascades. By activating nuclear factor-erythroid 2-related factor (Nrf2), galangin treatment significantly increased expression of glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS). This activation of Nrf2 depended on extracellular signal-regulated kinases (ERKs) and protein kinase B (AKT) signaling. Inhibition of GSH in galangin-treated cells attenuated the protective effect of galangin against the deleterious effects of UVB. Our results reveal that galangin protects human keratinocytes by activating ERK/AKT-Nrf2, leading to elevated expression of GSH-synthesizing enzymes.

Association of Two Polymorphisms of DNA Polymerase Beta in Exon-9 and Exon-11 with Ovarian Carcinoma in India

  • Khanra, Kalyani;Panda, Kakali;Bhattacharya, Chandan;Mitra, A.K.;Sarkar, Ranu;Bhattacharyya, Nandan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1321-1324
    • /
    • 2012
  • Background: DNA polymerase beta ($pol{\beta}$) is a key enzyme in the base excision repair pathway. It is 39kDa protein, with two subunits, one large subunit of 31 kDa having catalytic activity between exon V to exon XIV, and an 8 kDa smaller subunit having single strand DNA binding activity. Exons V to VII have double strand DNA binding activity, whereas exons VIII to XI account for the nucleotidyl transferase activity and exons XII to XIV the dNTP selection activity. Aim: To examine the association between $pol{\beta}$ polymorphisms and the risk of ovarian cancer, the present case control study was performed using 152 cancer samples and non-metastatic normal samples from the same patients. In this study, mutational analysis of $pol{\beta}$ genomic DNA was undertaken using primers from exons IX to XIV - the portion having catalytic activity. Results: We detected alteration in DNA polymerase beta by SSCP. Two specific heterozygous point mutations of $pol{\beta}$ were identified in Exon 9:486, A->C (polymorphism 1; 11.18%) and in Exon 11:676, A->C (polymorphism 2; 9.86%). The correlation study involving polymorphism 1 and 4 types of tissue showed a significant correlation between mucinous type with a Pearson correlation value of 4.03 (p=0.04). The association among polymorphism 2 with serous type and stage IV together have shown Pearson ${\chi}^2$ value of 3.28 with likelihood ratio of 4.4 (p=0.07) with OR =2.08 (0.3-14.55). This indicates that there is a tendency of correlation among polymorphism 2, serous type and stage IV, indicating a risk factor for ovarian cancer. Conclusion: Hence, the results indicate that there is a tendency for $pol{\beta}$ polymorphisms being a risk factor for ovarian carcinogenesis in India.

Catalytic Ability Improvement of Phenylalanine Hydroxylase from Chromobacterium violaceum by N-Terminal Truncation and Proline Introduction

  • Liu, Zhongmei;Cheng, Zhongyi;Ye, Shuangshuang;Zhou, Li;Zhou, Zhemin
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1375-1382
    • /
    • 2019
  • Phenylalanine hydroxylase from Chromobacterium violaceum (CvPAH) is a monomeric enzyme that converts phenylalanine to tyrosine. It shares high amino acid identity and similar structure with a subunit of human phenylalanine hydroxylase that is a tetramer, resulting in the latent application in medications. In this study, semirational design was applied to CvPAH to improve the catalytic ability based on molecular dynamics simulation analyses. Four N-terminal truncated variants and one single point variant were constructed and characterized. The D267P variant showed a 2.1-fold increased thermal stability compared to the wild type, but lower specific activity was noted compared with the wild type. The specific activity of all truncated variants was a greater than 25% increase compared to the wild type, and these variants showed similar or slightly decreased thermostability with the exception of the $N-{\Delta}9$ variant. Notably, the $N-{\Delta}9$ variant exhibited a 1.2-fold increased specific activity, a 1.3-fold increased thermostability and considerably increased catalytic activity under the neutral environment compared with the wild type. These properties of the $N-{\Delta}9$ variant could advance medical and pharmaceutical applications of CvPAH. Our findings indicate that the N-terminus might modulate substrate binding, and are directives for further modification and functional research of PAH and other enzymes.

Identification of Mutations in Protein Kinase CKIIβ Subunit That Affect Its Binding to Ribosomal Protein L41 and Homodimerization

  • Ahn, Bong-Hyun;Lee, Ji-Hoon;Bae, Young-Seuk
    • BMB Reports
    • /
    • v.36 no.4
    • /
    • pp.344-348
    • /
    • 2003
  • Protein kinase CKII is composed of two catalytic ($\alpha$ or $\alpha$') subunits and two regulatory ($\beta$) subunits. The $CKII{\beta}$ subunit is thought to mediate the tetramer formation and interact with other target proteins. However, its physiological function remains obscure. In this study, point mutants of $CKII{\beta}$ that are defective for the L41 binding were isolated by using the reverse two-hybrid system. A sequence analysis of the point mutants revealed that Asp-26, Met-52, and Met-78 of $CKII{\beta}$ are critical for L41 binding; Asn-67 (and/or Lys-139) and Met-52 are important for $CKII{\beta}$ homodimerization. Two point mutants, R75 and R83, of $CKII{\beta}$ interacted with L5, topoisomerase $II{\beta}$, and CKBBP1/SAG, but not with the wild-type $CKII{\beta}$. This indicates that $CKII{\beta}$ homodimerization is not a prerequisite for its binding to target proteins. These $CKII{\beta}$ point mutants may be useful in exploring the biochemical physiological functions of $CKII{\beta}$.

Use of Clostridium septicum Alpha Toxins for Isolation of Various Glycosylphosphatidylinositol-Deficient Cells

  • Shin Dong-Jun;Choy Hyon E.;Hong Yeongjin
    • Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.266-271
    • /
    • 2005
  • In eukaryotic cells, various proteins are anchored to the plasma membrane through glycosylphosphatidylinositol (GPI). To study the biosynthetic pathways and modifications of GPI, various mutant cells have been isolated from the cells of Chinese hamster ovaries (CHO) supplemented with several exogenous genes involved in GPI biosynthesis using aerolysin, a toxin secreted from gram-negative bacterium Aeromonas hydrophila. Alpha toxin from Gram-positive bacterium Clostridium septicum is homologous to large lobes (LL) of aerolysin, binds GPI-anchored proteins and possesses a cell-destroying mechanism similar to aerolysin. Here, to determine whether alpha toxins can be used as an isolation tool of GPI-mutants, like aerolysin, CHO cells stably transfected with several exogenous genes involved in GPI biosynthesis were chemically mutagenized and cultured in a medium containing alpha toxins. We isolated six mutants highly resistant to alpha toxins and deficient in GPI biosynthesis. By genetic complementation, we determined that one mutant cell was defective of the second subunit of dolichol phosphate mannose synthase (DPM2) and other five cells were of a putative catalytic subunit of inositol acyltransferase (PIG-W). Therefore, C. septicum alpha toxins are a useful screening probe for the isolation of various GPI-mutant cells.

Over-Expression of Phospholipase D Isozymes Down-Regulates Protein Kinase CKII Activity via Proteasome-Dependent CKIIβ Degradation in NIH3T3 Cells

  • Yoon, Soo-Hyun;Min, Do Sik;Bae, Young-Seuk
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.299-305
    • /
    • 2009
  • Over-expression of phospholipase D (PLD) 1 or PLD2 down-regulated CKII activity in NIH3T3 cells. The same results were found with catalytically inactive mutants of PLD isozymes, indicating that the catalytic activity of PLD is not required for PLD-mediated CKII inhibition. Consistent with this, 1-butanol did not alter CKII activity. The reduction in CKII activity in PLD-over-expressing NIH3T3 cells was due to reduced protein level, but not mRNA level, of the $CKII{\beta}$ subunit. This PLD-induced $CKII{\beta}$ degradation was mediated by ubiquitin-proteasome machinery, but MAP kinase and mTOR were not involved in $CKII{\beta}$ degradation. PLD isozymes interacted with the $CKII{\beta}$ subunit. Immunocytochemical staining revealed that PLD and $CKII{\beta}$ colocalize in the cytoplasm of NIH3T3 cells, especially in the perinuclear region. PLD binding to $CKII{\beta}$ inhibited $CKII{\beta}$ autophosphorylation, which is known to be important for $CKII{\beta}$ stability. In summary, the current data indicate that PLD isozymes can down-regulate CKII activity through the acceleration of $CKII{\beta}$ degradation by ubiquitin-proteasome machinery.

Dephosphorylation of DBC1 by Protein Phosphatase 4 Is Important for p53-Mediated Cellular Functions

  • Lee, Jihye;Adelmant, Guillaume;Marto, Jarrod A.;Lee, Dong-Hyun
    • Molecules and Cells
    • /
    • v.38 no.8
    • /
    • pp.697-704
    • /
    • 2015
  • Deleted in breast cancer-1 (DBC1) contributes to the regulation of cell survival and apoptosis. Recent studies demonstrated that DBC is phosphorylated at Thr454 by ATM/ATR kinases in response to DNA damage, which is a critical event for p53 activation and apoptosis. However, how DBC1 phosphorylation is regulated has not been studied. Here we show that protein phosphatase 4 (PP4) dephosphorylates DBC1, regulating its role in DNA damage response. PP4R2, a regulatory subunit of PP4, mediates the interaction between DBC1 and PP4C, a catalytic subunit. PP4C efficiently dephosphorylates pThr454 on DBC1 in vitro, and the depletion of PP4C/PP4R2 in cells alters the kinetics of DBC1 phosphorylation and p53 activation, and increases apoptosis in response to DNA damage, which are compatible with the expression of the phosphomimetic DBC-1 mutant (T454E). These suggest that the PP4-mediated dephosphorylation of DBC1 is necessary for efficient damage responses in cells.

Expression and pH-dependence of the Photosystem II Subunit S from Arabidopsis thaliana

  • Jeong, Mi-Suk;Hwang, Eun-Young;Jin, Gyoung-Ean;Park, So-Young;Zulfugarov, Ismayil S.;Moon, Yong-Hwan;Lee, Choon-Hwan;Jang, Se-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1479-1484
    • /
    • 2010
  • Photosynthesis uses light energy to drive the oxidation of water at an oxygen-evolving catalytic site within photosystem II (PSII). Chlorophyll binding by the photosystem II subunit S protein, PsbS, was found to be necessary for energy-dependent quenching (qE), the major energy-dependent component of non-photochemical quenching (NPQ) in Arabidopsis thaliana. It is proposed that PsbS acts as a trigger of the conformational change that leads to the establishment of nonphotochemical quenching. However, the exact structure and function of PsbS in PSII are still unknown. Here, we clone and express the recombinant PsbS gene from Arabidopsis thaliana in E. coli and purify the resulting homogeneous protein. We used various biochemical and biophysical techniques to elucidate PsbS structure and function, including circular dichroism (CD), fluorescence, and DSC. The protein shows optimal stability at $4^{\circ}C$ and pH 7.5. The CD spectra of PsbS show that the conformational changes of the protein were strongly dependent on pH conditions. The CD curve for PsbS at pH 10.5 curve had the deepest negative peak and the peak of PsbS at pH 4.5 was the least negative. The fluorescence emission spectrum of the purified PsbS protein was also measured, and the ${\lambda}_{max}$ was found to be at 328 nm. PsbS revealed some structural changes under varying temperature and oxygen gas condition.

Identification of genomic diversity and selection signatures in Luxi cattle using whole-genome sequencing data

  • Mingyue Hu;Lulu Shi;Wenfeng Yi;Feng Li;Shouqing Yan
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.461-470
    • /
    • 2024
  • Objective: The objective of this study was to investigate the genetic diversity, population structure and whole-genome selection signatures of Luxi cattle to reveal its genomic characteristics in terms of meat and carcass traits, skeletal muscle development, body size, and other traits. Methods: To further analyze the genomic characteristics of Luxi cattle, this study sequenced the whole-genome of 16 individuals from the core conservation farm in Shandong region, and collected 174 published genomes of cattle for conjoint analysis. Furthermore, three different statistics (pi, Fst, and XP-EHH) were used to detect potential positive selection signatures related to selection in Luxi cattle. Moreover, gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analyses were performed to reveal the potential biological function of candidate genes harbored in selected regions. Results: The results showed that Luxi cattle had high genomic diversity and low inbreeding levels. Using three complementary methods (pi, Fst, and XP-EHH) to detect the signatures of selection in the Luxi cattle genome, there were 2,941, 2,221 and 1,304 potentially selected genes identified, respectively. Furthermore, there were 45 genes annotated in common overlapping genomic regions covered 0.723 Mb, including PLAG1 zinc finger (PLAG1), dedicator of cytokinesis 3 (DOCK3), ephrin A2 (EFNA2), DAZ associated protein 1 (DAZAP1), Ral GTPase activating protein catalytic subunit alpha 1 (RALGAPA1), mediator complex subunit 13 (MED13), and decaprenyl diphosphate synthase subunit 2 (PDSS2), most of which were enriched in pathways related to muscle growth and differentiation and immunity. Conclusion: In this study, we provided a series of genes associated with important economic traits were found in positive selection regions, and a scientific basis for the scientific conservation and genetic improvement of Luxi cattle.