• Title/Summary/Keyword: catalytic membrane

Search Result 131, Processing Time 0.027 seconds

CO Selox Reaction Using Y-type Zeolite Catalytic Membranes

  • Bemardo, P.;Algieri, C.;Barbieri, G.;Drioli, E.
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.13-20
    • /
    • 2006
  • The production of CO-free hydrogen streams for feeding PEM-Fuel Cells using catalytic zeolite membrane reactors was analysed by means of selective oxidation. Tubular FAU (Na-Y) zeolite membranes, prepared by a secondary growth method and Pt-loaded, were used in a flow-through MR configuration. The catalytic tests were carried out at $200^{\circ}C$ and at different pressures with a simulated dry reformate shifted gas mixture ($H_2$ ca. 60%, CO 1 %, plus $O_2,\;N_2,\;CO_2$). The operative $O_2/CO$ stoichiometric equivalent feed ratio was ${\lambda}= 2$. These catalytic tests, reducing the CO concentration down to $10{\sim}50$ ppm, verified the possibility of MR integration after using a low temperature water-gas shift unit of a fuel processor to convert hydrocarbons into hydrogen-rich gas.

Characteristics of Fabricated MEA(Membrane Electrode Assembly) on Polymer Electrolyte Membrane Fuel Cell Made by the Screen Printing Method (스크린 프린팅법을 이용하여 제조된 고분자 전해질 연료전지에서 MEA(조합 막 전극)의 특성)

  • 임재욱;최대규;류호진
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.4
    • /
    • pp.27-30
    • /
    • 2003
  • The effect of fabrication method of catalytic layer on electrode performance has been investigated. Brush, spray gun and screen printer were used as fabrication tool and catalytic layers were formed by several methods in screen printing. Direct screen printing on polymer membrane, screen printing on carbon paper, and their combined method were applied. In the electrode fabricated by the screen printing method, Pt loading of Pt/C catalysts could be cut down to 50%, compared with results by the brushing and spraying methods. The best result of electrode was obtained as 0.6 V, at 1 A/$\textrm{cm}^2$ when catalytic layer was formed by the combined way.

  • PDF

PARTIAL OXIDATION OF PROPANE ON NAFION SUPPORTED CATALYTIC MEMBRANE

  • F. Frusteri;C. Espro;F. Arena;F. Arena;E. Passalacqua;A.Patti;A. Parmaliana
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.55-58
    • /
    • 1999
  • Nafion supported catalytic membranes were found to be active, stable and selective in th partial oxidation of propane to oxygenates with H2O2 under mild condition. Addition of Fe2+ in liquid phase enhances the reaction rate. Reaction proceeds according to a radical mechanism based on th electrophilic activation of propane on superacid sites and subsequent reaction of the activated paraffin with OH radicals. The use of a catalytic membrane, which allow separation of the intermediate products from the liquid phase containing the oxidant, was found to be effective to perform selective partial oxidation of propane with high yields to oxygenated products.

Effects of Polyamidoamine Dendrimers on the Catalytic Layers of a Membrane Electrode Assembly in Fuel Cells

  • Lee Jin Hwa;Won Jongok;Oh In Hwan;Ha Heung Yong;Cho Eun Ae;Kang Yong Soo
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.101-106
    • /
    • 2006
  • The transport of reactant gas, electrons and protons at the three phase interfaces in the catalytic layers of membrane electrode assemblies (MEAs) in proton exchange, membrane fuel cells (PEMFCs) must be optimized to provide efficient transport to and from the electrochemical reactions in the solid polymer electrolyte. The aim of reducing proton transport loss in the catalytic layer by increasing the volume of the conducting medium can be achieved by filling the voids in the layer with small-sized electrolytes, such as dendrimers. Generation 1.5 and 3.5 polyamidoamine (PAMAM) dendrimer electrolytes are well-controlled, nanometer-sized materials with many peripheral ionic exchange, -COOH groups and were used for this purpose in this study. The electrochemically active surface area of the deposited catalyst material was also investigated using cyclic voltammetry, and by analyzing the Pt-H oxidation peak. The performances of the fuel cells with added PAMAM dendrimers were found to be comparable to that of a fuel cell using MEA, although the Pt utilization was reduced by the adsorption of the dendrimers to the catalytic layer.

Comparison of carbon nanotube growth mode on various substrate

  • I.K. Song;Y.S. Cho;Park, K.S.;Kim, D.J.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.44-44
    • /
    • 2003
  • Growth mechanism of carbon nanotubes(CNTs) synthesized by chemical vapor deposition is abided by two growth modes. These growth modes are classified by the position of activated catalytic metal particle in the CNTs. Growth mode can be also affected by interaction between substrate and catalytic metal and induced energy such as thermal and plasma. We studied the reaction of catalytic metal to the substrate and growth mode of CNTs. Various substrates such as Si(100), graphite plate, coming glass, sapphire and AAO membrane are used to study the relation between catalytic metal and substrate in the synthesis of CNTs. For catalytic metal, thin film was deposited on various substrate via sputtering technique with a thickness of ∼20nm and magnetic fluids with none-sized particles were dispersed on AAO membrane. After laying process on AAO membrane, it was dried at 80$^{\circ}C$ for 8 hour. Synthesizing of CNTs was carried out at 900$^{\circ}C$ in NH3/C2H2 mixture gases flow for 10minutes.

  • PDF

Preparation of Alumino-silicate Membrane and Its Application to a Gas Separation

  • 김태환
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2002.04a
    • /
    • pp.23-46
    • /
    • 2002
  • The cryogenic, pressure swing adsorption and membrane methods have been used to separate air into nitrogen and oxygen. The air separation membrane is made of the polymers, of which manufacturing process is complicate and it causes a little high production cost. Polymer membrane has temperature limit in usage and low durability even at moderate temperature. Therefore, inorganic membranes have been studied for years. As formation of unit alumino-silicate membrane, unit cells of membrane were made with a few coating methods. In this study the dipping of substrate into sols, application of vacuum to the opposite side of substrate with coating and rotating of the substrate in the sols were found as good coating memthods to make a uniform coating and to control the thickness of membrane. The membrane coats were examined by SEM and XRD. The sample ESZl-1 was compared with those of samples that prepared by another method. The present developed coating methods could be applied to the various types of zeolite membrane formation, that is A- X-, Y- ZSM- and MCM-types of membranes. Also these membrane forming methods could be applied to formation of catalyst absorbed zeolite membrane, of which zeolite absorb the catalytic metals. The product obtained from these coating methods could be applied to the industrial gas and liquid phase catalytic reaction and separation processes.

  • PDF

CATALYTIC MEMBRANE REACTOR FOR DEYDROGENATION OF WATER VIA GAS-SHIFT

  • Tosti, Silvano;Castelli, Stefano;Violante, Vittorio
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.43-47
    • /
    • 1999
  • Pd-ceramic composite membranes and catalytic membrane reactors(CMR) have been studied for hydrogen purification and recovery in th fusion reactor fuel cycle. The development of techniques for coating microporous ceramic tubes with Pd and Pd/Ag layers is described: composite membranes have been produced by electroless deposition (Pd/Ag film of 10-20${\mu}{\textrm}{m}$) and rolling of thin metal sheet (Pd and Pd/ Ag membranes of 50-70 ${\mu}{\textrm}{m}$). Experimental results on electroless membranes showed that the metallic film presented some defects and the membranes had not complete hydrogen selectivity . Then the catalytic membrane reactors with electroless membranes can be applied for some industrial processes that do not require a complete separation of the hydrogen (i.e. in the dehydrogenation of hydrocarbons). The rolled thin Pd/Ag membranes separated the hydrogen from the other gas with a complete selectivity and exhibited a slightly larger (about a factor 1.7) mass transfer resistance with respect to the electroless membranes. Experimental tests confirmed the good performances in terms of durability.

  • PDF

A Pd Doped PVDF Hollow Fibre for the Dissolved Oxygen Removal Process

  • Batbieri G.;Brunetti A.;Scura F.;Lentini F.;Agostino R G.;Kim, M.J.;Formoso V.;Drioli E.;Lee, K.H.
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • In semiconductor industries, dissolved oxygen is one of the most undesirable contaminants of ultrapure water. A method for dissolved oxygen removal (DOR) consists in the use of polymeric hollow fibres, loaded with a catalyst and fed with a reducing agent such as hydrogen. In this work, PVDF hollow fibres loaded with Pd were characterized by means of perporometry, scanning electron microscopy (SEM), energy dispersive X-ray (EDX). The hollow fibre analyzed shows a five-layer structure with remarkable morphological differences. An estimation of pore diameters and their distribution was performed giving a mean pore diameter of 100 nm. The permeance and selectivity of the fibres were measured using $H_2,\;N_2,\;O_2$ as single gases, at different operating conditions. An $H_2$ permeance of $37 mmol/m^2s$ was measured and $H_2/O_2$ and $H_2/N_2$ selectivities of ca. 3 were obtained. $H_2$ permeance was 1/3 when a water stream flows in the shell side. Catalytic fibrebehaviour was simulated using a mathematical model for a loop membrane reactor, considering only $O_2$ and $H_2$ diffusive transport inside the membrane and their catalytic reaction. Dimensionless parameters such as the Thiele modulus are employed to describe the system behaviour. The model agrees well with the experimental reaction data.

Catalytic Hydrolysis of p-Nitrophenyl Palmitate in Aqueous Dipalmitoyl Phosphatidyl Choline Bilayer Membrane (Dipalmitoyl Phosphatidyl Choline Bilayer Membrane 촉매에 의한 para-Nitrophenyl Palmitate의 가수분해 반응)

  • Kim, Ki-Jun;Lee, Hoo-Seol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.48-51
    • /
    • 2008
  • Dipalmitoyl phosphatidyl choline and p-nitrophenyl palmitate were directly sonicated in acidic water for 6 minutes to give clear stock solutions. The catalytic hydrolysis of p-nitrophenyl palmitate was studied at $30-50^{\circ}C$ in the presence of unilamellar vesicle and mixture of unilamellar and multilamellar aggregates. The difference of reaction rate between unilamellar and multilamellar was observed. The rate of unilamellar reaction compared to the rate of mixture reaction showed more catalytic effect. The phase transition temperature of vesicle was measured at $37-44^{\circ}C$.