• Title/Summary/Keyword: catalytic filter

Search Result 72, Processing Time 0.02 seconds

NO REDUCTION PROPERTY OF Pt-V2O5-WO3/TiO2 CATALYST SUPPORTED ON PRD-66 CERAMIC FILTER

  • Kim, Young-Ae;Choi, Joo-Hong;Bak, Young-Cheol
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.239-246
    • /
    • 2005
  • The effect of Pt addition over $V_2O_5-WO_3/TiO_2$ catalyst supported on PRO-66 was investigated for NO reduction in order to develop the catalytic filter working at low temperature. Catalytic filters, $Pt-V_2O_5-WO_3/TiO_2/PRD$, were prepared by co-impregnation of Pt, V, and W precursors on $TiO_2$-coated ceramic filter named PRD (PRD-66). Titania was coated onto the pore surface of the ceramic filter using a vacuum aided-dip coating method. The Pt-loaded catalytic filter shifted the optimum working temperature from $260-320^{\circ}C$(for the catalytic filter without Pt addition) to $190-240^{\circ}C$, reducing 700 ppm NO to achieve the $N_x$ slip concentration($N_x\;=\;NO+N_2O+NO_2+NH_3$) less than 20 ppm at the face velocity of 2 cm/s. $Pt-V_2O_5-WO_3/TiO_2$ supported on PRD showed the similar catalytic activity for NO reduction with that supported on SiC filter as reported in a previous study, which implies the ceramic filter itself has no considerable interaction for the catalytic activity.

Preparation and Properties of Disc Type CuO Catalyst Impregnated Ceramic Filters (디스크형 산화구리 촉매담지 세라믹필터의 제조와 물성)

  • Hong Min-Sun;Moon Su-Ho;Lee Jae-Chun;Lee Dong-Sub;Lim Woo Taik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.2
    • /
    • pp.185-193
    • /
    • 2004
  • A catalyst with CuO ceramic filter for simultaneous treatment of dust and HAP was prepared and characterized. Catalytic ceramic filter can not only potentially achieve the substantial savings in energy but provide with effective optimization and integration of process for simultaneous removal of SO$_2$, NO$_{x}$ and particulates from flue gases. Catalytic ceramic filters remove simultaneously particulates on exterior surface of filters and reduce NO to $N_2$ and $H_2O$ by SCR (Selective Catalytic Reduction) process. Preparation of catalyst impregnated ceramic filter with disk shape (Ψ 50) follow the processing of alumino-silicate ceramic filter, support impregnation and catalyst impregnation (copper oxide). Preparation routes of alumino-silicate catalyst carrier suitable for production of catalytic filters practically were studied and developed using the sol-gel and colloidal processing, homogeneous precipitation and impregnation method. Characterization of the catalyst, catalyst carrier catalytic filter materials have been performed the using various techniques such as BET, XRD, TGA, SEM. Combination of the sol-gel and colloidal processing and impregnation method is recommended to prepare catalyst carriers economically for catalytic filter applications.s.

NO Reduction Performance of V2O5-WO3/TiO2 Catalyst Supported on a Ceramic Sheet Filter (세라믹 시트 필터에 부착된 V2O5-WO3/TiO2 촉매의 NO 환원 성능)

  • Choi, Joo Hong
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • Catalytic filter has many advantages for the industrial application owing to its bi-functional ability to treat nitrogen oxides and particulate simultaneously. The technical feasibility of using the catalytic filter in the flue gas treatment process will be more promoted if the high porous ceramic sheet filter is utilized. However, it is not easy to prepare the effective catalytic filter using sheet filter as it has less room for catalyst support due to its thin layer. In this study, catalytic filter using a domestic ceramic sheet filter element has been prepared and conducted the experimental evaluation for NO reduction performance. The current sheet filter element shows the low catalytic activity less than 92% conversion for NO concentration 700 ppm at the face velocity $0.02m\;s^{-1}$. This unexpected low catalytic activity seems to be caused by the present of extraordinary large pores from the lack of uniformity in the pore size distribution of the sheet filter. The large pore size of the sheet filter is reduced by composing the smaller powder as its raw material, which presents improvement in NO conversion more than 96%. More improvement is observed showing 98% NO conversion which is applicable to a commercial plant when the catalyst coating layer is expanded by adding the large $TiO_2$ particles during the catalyst preparation. Both of above two methods is regarded as that the broad gates of the larger pores in the coating layer are effectively filled with the proper catalyst. So these results encourage the utilization of sheet filter as a good catalytic filter material with its potential merit of high permeability.

Study of Catalytic Filter on the Removal of Dust and HVOC (촉매필터를 이용한 먼지 및 HVOC 제거 특성 연구)

  • Jeong, Soon Kwan;Park, Young Ok
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.80-85
    • /
    • 2008
  • Catalytic filter is capable of performing shallow bed dust filtration plus a catalytic reaction, promoted by a catalyst deposited in its inner structure. Such a feature may allow potential cost and space reduction in several environmental applications. Dust filtration and halogenated volatile organic compound (1,2-dichlorobenzene) destruction were carried out in a lab-scale reactor. $WO_3-V_2O_5/TiO_2$ supplied by MaGreen, which showed high catalytic acitivity at low temperature, was used as a catalyst. P-84 that can be operated under $250^{\circ}C$ was used as a felt. The catalytic activity and filtration efficiency of catalytic filters were investigated under the operating conditions, including temperature, face velocity, and dust concentration. The catalytic activity of catalytic filter increased with increasing temperature and the amount of catalyst loaded. The test results showed that the filtration efficiency was primarily affected by the face velocity. Pressure drop variations as a function of time were investigated for a variety of conditions. In case of virgin filter, a dramatic decrease in the pulse interval and a slightly increase in the base line pressure drop were observed. A relatively slow pressure drop build-up was recorded for the catalytic filter due to smooth and slippery surface characteristics of nanofiber. The catalytic filter indicated that high filtration efficiency over 99.98% and high catalytic activity over 90% at 1 m/min and $210^{\circ}C$.

Development of a New-type Apparatus Decomposing Volatile Organic Compounds using a Combination System of an Electrical Exothermic SiC Honeycomb and a Catalytic Filter

  • Nishikawa, Harumitsu;Takahara, Yasumitsu;Takagi, Osamu;Tsuneyoshi, Koji;Kato, Katsuyoshi;Ihara, Tadayoshi;Wakai, Kazunori
    • Asian Journal of Atmospheric Environment
    • /
    • v.2 no.2
    • /
    • pp.75-80
    • /
    • 2008
  • A new-type apparatus decomposing volatile organic compounds (VOCs) using a combination system of an electrical exothermic SiC honeycomb and a catalytic filter was developed. This linear combination system is very useful to the catalytic decomposition of VOCs, because the gas involving VOCs is well heated in the SiC honeycomb and then flows into the catalytic filter. In the proposed apparatus, the outlet gas temperatures of SiC honeycomb maintained at ca. $300^{\circ}C$ after 5 min from the starting of applying electric current, and sufficient for the catalytic degradation of VOC components, i.e. toluene, isopropanol, methyl ethyl ketone and ethyl acetate. The average decomposition rate of total VOCs exhausted from a printing factory was 85% using pt catalyst at SV=19,000 in this system.

The Effect of $MnO_2$ Addition on the $V_2O_5/TiO_2$ Catalytic Filters for NO Reduction (NO 환원반응을 위한 $V_2O_5/TiO_2$계 촉매필터의 $MnO_2$ 조촉매 효과)

  • Shin, Hae-Joong;Choi, Jae-Ho;Song, Young-Hwan;Lee, Ju-Young;Jang, Sung-Cheol;Choi, Joo-Hong
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.363-368
    • /
    • 2008
  • Nitrogen oxides (NO, $NO_2$ and $N_2O$) have been controlled effectively by the SCR catalysts coated on monolith or honeycomb in commercial sites with ammonia as reductant at high temperature range $300{\sim}400^{\circ}C$. However, the catalytic filter has much merit on the point of controlling the particles and nitrogen oxides simultaneously. It will be more advanced-system if the catalytic working temperature is reduced to the normal filtration temperature of under $200^{\circ}C$. This study has focus on the development of the catalytic filter working at the low temperature. So the additive effect of the components such as Pt and Mn (which are known the catalytic component of $V_2O_5/TiO_2$ was investigated. The $V_2O_5-WO_3$ catalytic filter exhibited high activity and selectivity at $250{\sim}320^{\circ}C$ showing more than 95% NO conversion for the treatment of 600 ppm NO at face velocity 2 cm/s. The Pt-$V_2O_5-WO_3$ catalytic filter shifted the optimum working temperature towards the lower temperature ($170{\sim}200^{\circ}C$). And NO conversion was 100% and higher than that of $V_2O_5-WO_3$ catalyst at $250{\sim}320^{\circ}C$. The $MnO_X-V_2O_5-WO_3$ catalytic filter showed the wide temperature range of $220{\sim}330^{\circ}C$ for more than 95% NO conversion. This is a remarkable advantage when considered the $MnO_X$ catalytic filter presents the maximum activity at $150{\sim}250^{\circ}C$ and $V_2O_5-WO_3$ catalytic filter shows the maximum activity at $250{\sim}320^{\circ}C$.

  • PDF

Preparation and Characteristics of Catalyst Coated Cordierite Filter (촉매 처리된 코디어라이트 필터의 제조 및 그 특성)

  • Kim, Yeong-Bae;Jo, Eul-Hun;Jang, Yun-Yeong;Sin, Min-Cheol;Lee, Hui-Su;Choe, Deok-Gyun
    • Korean Journal of Materials Research
    • /
    • v.12 no.2
    • /
    • pp.129-134
    • /
    • 2002
  • The optimum condition for fabricating cordierite disc type filter element was deduced. Cordierite monolith was used as starting material for filter element because it has many advantages such as high thermal shock resistance and good catalytic activity compared with $TiO_2$and SiC. The contents of organic additives and foaming agent were optimized to control the porosity and mechanical strength of cordierite filter. Among the required properties to be adopted as filter elements, the pressure drop and NOx removal efficiency were investigated depending on processing variables. It was found that pressure drop depends on particle size distribution of cordierite monolith and organic additives added as forming agent. The pressure drop at 5cm/sec of face velocity was in the range of 15~655mm$H_2O$ at room temperature. The NOx removal efficiency of catalytic filter with $V_2O_5$ as catalyst was over 85% at $450^{\circ}C$.

A Study on Numerical Simulation of Gaseous Flow in SCR Catalytic Filter of Diesel Exhaust Gas Aftertreatment Device

  • Bae, Myung-Whan;Syaiful, Syaiful;Mochimaru, Yoshihiro
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.360-368
    • /
    • 2010
  • A SCR catalytic filter system is used for reducing $NO_x$ and soot emissions simultaneously from diesel combustors. The amount of ammonia (as a reducing agent) must be controlled with the amount of $NO_x$ to obtain an optimal $NO_x$ conversion. Hence, gas mixing between ammonia and exhaust gases is vital to ensure that the SCR catalyst is optimally used. If ammonia mass distribution is not uniform, slip potential will occur in rich concentration areas. At lean areas, on the other hand, the catalyst is not fully active. The better mixing is indicated by the higher uniformity of ammonia mass distribution which is necessary to be considered in SCR catalytic filter system. The ammonia mass distributions are depended on the flow field of fluids. In this study, the velocity field of gaseous flow is investigated to characterize the transport of ammonia in SCR catalytic filter system. The influence of different injection placements on the ammonia mass distribution is also discussed. The results show that the ammonia mass distribution is more uniform for the injector directed radially perpendicular to the main flow of inlet at the gravitational direction than that at the side wall for both laminar (Re = 640) and turbulent flows (Re = 4255). It is also found that the mixing index decreases as increasing the heating temperature in the case of ammonia injected at the side wall.

Characteristics of Disc-Type V2O5 Catalyst Impregnated Ceramic Filters for NOx Removal (질소산화물 제거를 위한 디스크형 바나디아 촉매담지 세라믹필터의 특성)

  • 홍민선;문수호;이재춘;이동섭
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.451-463
    • /
    • 2004
  • The performance of disk-type catalytic filters impregnated by TiO$_2$ or TiO$_2$-3Al$_2$O$_3$ㆍ 2SiO$_2$ supports and V$_2$O$_{5}$ catalyst was evaluated for selective catalytic reduction (SCR) of NO with ammonia as a reductant. XRD, FT -IR, BET and SEM were used to characterize the catalytic filters prepared in this work. Optimal V$_2$O$_{5}$ loading and reaction temperature for V$_2$O$_{5}$/TiO$_2$ catalytic filters were 3-6 wt.% and 350-40$0^{\circ}C$ at GHSV 14,300 $hr^{-1}$ in the presence of oxygen, respectively. With increasing the V$_2$O$_{5}$ loading from 0.5 to 6 wt%, NO conversion increased from 24 to 96% at 40$0^{\circ}C$ and 14.300$hr^{-1}$, and maintained at 80% over in the V$_2$O$_{5}$ loading range of 3-6 wt.% and then dropped at V$_2$O$_{5}$ loading of 7wt.% over. In comparing V$_2$O$_{5}$/ TiO$_2$ and V$_2$O$_{5}$/ TiO$_2$-3Al$_2$O$_3$ㆍ2SiO$_2$ catalytic fillers, which have same 3wt.% V$_2$O$_{5}$ loading, the V$_2$O$_{5}$/ TiO$_2$-3A1$_2$O$_3$ㆍ2SiO$_2$ catalytic filter showed higher activity than V$_2$O$_{5}$/ TiO$_2$ catalytic filter, but higher differential pressure drops owing to its low air permeability. low air permeability.

Development of Ozone Plasma Sterilizer with Air Circulation Device (공기순환장치 적용 오존 플라즈마 살균장치 개발)

  • An, June;Chun, Young-Nam
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.1
    • /
    • pp.105-110
    • /
    • 2021
  • Objectives: The purpose of this study was to develop a new sterilization plasma device that would be proficient at sterilizing and removing pathogenic bacteria and viruses, and applicable to air purification systems. Methods: In order to understand the performance characteristics, the discharge characteristics of a packed bed DBD reactor and the ozone reduction characteristics of an ozone filter installed at the outlet of the reactor were investigated. Results: The novel packed-bed DBD reactor was proposed, and it was confirmed that the plasma discharge was uniformly and stably discharged throughout the entire layer, and sufficient ozone was generated for sterilization. The ozone filter was tested for three methods: adsorption, adsorption-decomposition, and catalytic decomposition. When the filter thickness was 30 mm, the ozone concentrations were 0.03 ppm, 0.01 ppm, and 0.21 ppm, respectively. The adsorption and adsorption-decomposition methods satisfied the EPA standard of less than 0.05ppm, but the catalytic decomposition method did not. Conclusions: It was confirmed that the adsorption-decomposition method has relatively excellent ozone filter performance and can provide the best ozone filter.