• Title/Summary/Keyword: catalytic effect

Search Result 827, Processing Time 0.028 seconds

Treatment of an Authentic Textile-dyeing Wastewater Utilizing a Fluidized Biofilter and Hybrid Recirculating System Composed of the Fluidized Biofilter and a UV/photocatalytic Reactor (실제 혼합염색폐수의 유동상 시스템을 활용한 미생물처리와 하이브리드 재순환시스템처리)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.71-77
    • /
    • 2015
  • A fluidized biofilter was filled with Pseudomonas sp. and Bacillus cereus/thuringiensis-fixed waste-tire crumb media and was run to treat authentic textile-dyeing wastewater mixed with alkaline polyester-weight-reducing wastewater. As a result, its removal efficiency of $COD_{Cr}$ and color were 75~80% and 67%, respectively. In addition, upon constructing hybrid-recirculating system composed of the fluidized biofilter and a 450 W-UV/photocatalytic reactor, only fluidized biofilter was run bypassing UV/photocatalytic reactor at stage I. Subsequently, the hybrid system was continuously run at stage II-i, ii and iii. At stage II-i, the total removal efficiency of $COD_{Cr}$ was enhanced to be 80~85%, compared to 75% at stage I, owing to 20~30% removal efficiency of the UV/photocatalytic reactor. However, at stage II-i, the total removal efficiency of color was enhanced to be 65~70%, compared to 45~65% at stage I, even though the removal efficiency of the UV/photocatalytic reactor was tantamount to merely 0~5%. As far as the removal efficiency of fluidized biofilter of the hybrid-recirculating system is concerned, its removal efficiency of color was enhanced by the synergy effect of the hybrid-recirculating system unlike $COD_{Cr}$. Besides, despite of the increase of hybrid-recirculating system-recycle ratio, the deactivation of photo-catalytic activity was scarcely observed to eliminate the color while its irreversible deactivation was observed to eliminate $COD_{Cr}$.

Effect of CH3COOH Concentration on Characteristics of Fe2O3Supported δ-alumina Catalyst by Hydrothermal Method (CH3COOH 농도가 수열법으로 제조된 Fe2O3 담지 감마알루미나 촉매의 특성에 미치는 영향)

  • 박병기;이정민;서동수
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.758-764
    • /
    • 2003
  • The cylindrical ${\gamma}$-alumina pellets were prepared by forming, hydration, drying and calcination after mixing amorphous alumina and pore generating agent with water. Concentration of Fe(NO$_3$)$_3$ㆍ9$H_2O$ that was catalyst precursor was fixed and made mixing solution that changed concentration of $CH_3$COOH in range of 2.5~20%, and here ${\gamma}$-alumina pellets were immerged and were hydrothermaly treated for 3 h at $200^{\circ}C$. And then we investigated creation and change of crystal, pore characteristics, $N_2$ adsorption and desorption isotherms, changes of acid site and mechanical strengths etc. According to the concentration of $CH_3$COOH, the crystals grew to acicular shape of 0.5~2${\mu}m$ length, and crystal structure showed the pseudo-boehmite structure. When hydrothermaly treated in 10% $CH_3$COOH solution, pore volume between 100~1000 $\AA$ was highest by 0.86 cc/g, and width of hysteresis curved line due to $N_2$ adsorption/desorption appeared as was smallest. When concentration of $CH_3$COOH was in range of 5~15%, new C-H functional groups were formed. Mechanical strength of pellets was highest by 1.35 MPa when $CH_3$COOH concentration was 2.5%.

CO and C3H8 Oxidations over Supported Co3O4, Pt and Co3O4-Pt Catalysts: Effect on Their Preparation Methods and Supports, and Catalyst Deactivation (Co3O4, Pt 및 Co3O4-Pt 담지 촉매상에서 CO/C3H8 산화반응: 담체 및 제조법에 따른 영향과 촉매 비활성화)

  • Kim, Moon-Hyeon;Kim, Dong-Woo;Ham, Sung-Won
    • Journal of Environmental Science International
    • /
    • v.20 no.2
    • /
    • pp.251-260
    • /
    • 2011
  • $TiO_2$- and $SiO_2$-supported $Co_3O_4$, Pt and $Co_3O_4$-Pt catalysts have been studied for CO and $C_3H_8$ oxidations at temperatures less than $250^{\circ}C$ which is a lower limit of light-off temperatures to oxidize them during emission test cycles of gasoline-fueled automotives with TWCs (three-way catalytic converters) consisting mainly of Pt, Pd and Rh. All the catalysts after appropriate activation such as calcination at $350^{\circ}C$ and reduction at $400^{\circ}C$ exhibited significant dependence on both their preparation techniques and supports upon CO oxidation at chosen temperatures. A Pt/$TiO_2$ catalyst prepared by using an ion-exchange method (IE) has much better activity for such CO oxidation because of smaller Pt nanoparticles, compared to a supported Pt obtained via an incipient wetness (IW). Supported $Co_3O_4$-only catalysts are very active for CO oxidation even at $100^{\circ}C$, but the use of $TiO_2$ as a support and the IW technique give the best performances. These effects on supports and preparation methods were indicated for $Co_3O_4$-Pt catalysts. Based on activity profiles of CO oxidation at $100^{\circ}C$ over a physical mixture of supported Pt and $Co_3O_4$ after activation under different conditions, and typical light-off temperatures of CO and unburned hydrocarbons in common TWCs as tested for $C_3H_8$ oxidation at $250^{\circ}C$ with a Pt-exchanged $SiO_2$ catalyst, this study may offer an useful approach to substitute $Co_3O_4$ for a part of platinum group metals, particularly Pt, thereby lowering the usage of the precious metals.

Collagen-Induced Arthritis Analysis in Rhbdf2 Knockout Mouse

  • Lee, Min-Young;Kang, Ju-Seong;Go, Ryeo-Eun;Byun, Yong-Sub;Wi, Young Jin;Hwang, Kyung-A;Choi, Jae-Hoon;Kim, Hyoung-Chin;Choi, Kyung-Chul;Nam, Ki-Hoan
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.298-305
    • /
    • 2018
  • Rhomboid family member 2 gene (Rhbdf2) is an inactive homologue lacking essential catalytic residues of rhomboid intramembrane serine proteases. The protein is necessary for maturation of tumor necrosis factor-alpha ($TNF-{\alpha}$) converting enzyme, which is the molecule responsible for the release of $TNF-{\alpha}$. In this study, Rhbdf2 knockout (KO) mice were produced by CRISPR/CAS9. To see the effects of the failure of $TNF-{\alpha}$ release induced by Rhbdf2 gene KO, collagen-induced arthritis (CIA), which is the representative $TNF-{\alpha}$ related disease, was induced in the Rhbdf2 mutant mouse using chicken collagen type II. The severity of the CIA was measured by traditional clinical scores and histopathological analysis of hind limb joints. A rota-rod test and grip strength test were employed to evaluate the severity of CIA based on losses of physical functions. The results indicated that Rhbdf2 mutant mice showed clear alleviation of the clinical severity of CIA as demonstrated by the significantly lower severity indexes. Moreover, a grip strength test was shown to be useful for the evaluation of physical functional losses by CIA. Overall, the results showed that the Rhbdf2 gene has a significant effect on the induction of CIA, which is related to $TNF-{\alpha}$.

Effect of the Structure of MoO3/bismuth molybdate Binary Phase Catalysts on the Selective Oxidation of Propylene (MoO3/bismuth molybdate 혼합 2상 촉매의 구조에 따른 프로필렌 선택산화반응 특성)

  • Cha, T.B.;Choi, M.J.;Park, D.W.;Chung, J.S.
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.53-63
    • /
    • 1992
  • M/BM -series catalysts, $MoO_3$ supported on ${\alpha}-Bi_2Mo_3O_{12}$ were also prepared by impregnation method. BM/M-series catalysts, ${\alpha}-Bi_2Mo_3O_{12}$ supported on $MoO_3$ were also prepared by coprecipitation. Structure and catalytic properties of the two phase catalysts were studied by means of using nitrogen adsorption, X-ray diffraction, and scanning electron microscopy. The reaction test for the selective oxidation of propylene to acrolein over Bi-molybdate catalysts was studied using a fixed-bed reactor system. In M/BM-series catalysts, $MoO_3$ was dispersed on ${\alpha}-Bi_2Mo_3O_{12}$, and the crystal structure of ${\alpha}-Bi_2Mo_3O_{12}$ remains unchanged by the presence of excess $MoO_3$. However the surface morphology and bulk structure of BM/M-series catalysts were altered probably because the precipitated $Bi(OH)_3$ reacted with $MoO_3$ during the calcination to form ${\alpha}-Bi_2Mo_3O_{12}$ phase. The results of propylene oxidation on both series catalysts showed that the reaction took place over the surface of ${\alpha}-Bi_2Mo_3O_{12}$ particle and the role of excess $MoO_3$ was to supply oxygen to ${\alpha}-Bi_2Mo_3O_{12}$. These increasing effects on activity were also observed in the mechanical mixtures of ${\alpha}-Bi_2Mo_3O_{12}$ and $MoO_3$.

  • PDF

New Synthesis of the Ternary Type Bi2WO6-GO-TiO2 Nanocomposites by the Hydrothermal Method for the Improvement of the Photo-catalytic Effect (개선된 광촉매 효과를 위한 수열법에 의한 삼원계 Bi2WO6-GO-TiO2 나노복합체의 쉬운 합성 방법)

  • Nguyen, Dinh Cung Tien;Cho, Kwang Youn;Oh, Won-Chun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.705-713
    • /
    • 2017
  • A novel material, $Bi_2WO_6-GO-TiO_2$ composite, was successfully synthesized using a facile hydrothermal method. During the hydrothermal reaction, the loading of $Bi_2WO_6$ and $TiO_2$ nanoparticles onto graphene sheets was achieved. The obtained $Bi_2WO_{6-GO-TiO2}$ composite photo-catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), Raman spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy (UV-vis-DRS), and X-ray photoelectron spectroscopy (XPS). The $Bi_2WO_6$ nanoparticle showed an irregular dark-square block nanoplate shape, while $TiO_2$ nanoparticles covered the surface of the graphene sheets with a quantum dot size. The degradation of rhodamine B (RhB), methylene blue trihydrate (MB), and reactive black B (RBB) dyes in an aqueous solution with different initial amount of catalysts was observed by UV spectrophotometry after measuring the decrease in the concentration. As a result, the $Bi_2WO_6-GO-TiO_2$ composite showed good decolorization activity with MB solution under visible light. The $Bi_2WO_6-GO-TiO_2$ composite is expected to become a new potential material for decolorization activity. Photocatalytic reactions with different photocatalysts were explained by the Langmuir-Hinshelwood model and a band theory.

Synthesis of High-energy-density Fuel through Dimerization of Bicyclo[2.2.1]hepta-2,5-diene over Co/HY Catalyst (Co/HY 제올라이트 촉매상에서 Bicyclo[2.2.1]hepta-2,5-diene 이량화를 통한 고에너지밀도 연료 제조)

  • Kim, Jongjin;Shim, Beomseok;Lee, Gayoung;Han, Jeongsik;Jeon, Jong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.185-190
    • /
    • 2018
  • The dimer of bicyclo [2.2.1] hepta-2,5-diene (norbornadiene) can be used as a high-energy-density fuel. The purpose of this study is to investigate the effect of Co loading on the acid properties of HY zeolite catalyst and the catalytic activity in norbornadiene dimerization. When the cobalt was loaded on the HY zeolite catalyst, the amount of acid sites did not change, but the acid strength weakened. This can be attributed to the decrease in $Br{\ddot{o}}nsted$ acid site and the increase in Lewis acid site. The norbornadiene conversion and yield of norbornadiene dimer over the Co/HY catalyst showed higher than those over the HY zeolite catalyst. The higher activity of the Co/HY catalyst can be ascribed to the higher amount of Lewis acid sites over the Co/HY catalyst. Density and calorific values of the norbornadiene dimer prepared by using the Co/HY catalyst agreed well with the known values in the literature. It was confirmed that the norbornadiene dimer prepared in this study can be used as a high-energy-density fuel.

Hydrogen Degradation of Pt/SBT/Si, Pt/SBT/Pt Ferroelectric Gate Structures and Degradation Resistance of Ir Gate Electrode (Pt/SBT/Si, Pt/SBT/Pt 강유전체 게이트 구조에서 수소 열화 현상 및 Ir 게이트 전극에 의한 열화 방지 방법)

  • 박전웅;김익수;김성일;김용태;성만영
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.2
    • /
    • pp.49-54
    • /
    • 2003
  • We have investigated the effects of hydrogen annealing on the physical and electrical properties of $SrBi_{2}Ta_{2}O_9(SBT)$ thin films in the Pt/SBT/Si (MFS) structure and Pt/SBT/Pt (MFM) one, respectively. The microstructure and electrical characteristics of the SBT films were deteriorated after hydrogen annealing due to the damage of the SBT films during the annealing process. To investigate the reason of the degradation of the SBT films in this work, in particular, the effect of the Pt top electrodes, SBT thin films deposited on Si, Pt, respectively, were annealed with the same process conditions. From the XRD, XPS, P-V, and C-V data, it was seen that the SBT itself was degraded after $H_2$ annealing even without the Pt top electrodes. In addition, the degradation of the SBT films after $H_2$ annealing was accelerated by the catalytic reaction of the Pt top electrodes which is so-called hydrogen degradation. To prevent this phenomenon, we proposed the alternative top electrode material, i.e. Ir, and the electrical properties of the SBT thin films were examined in the $Ir/IrO_2/SBT/IrO_2$ structures before and after the H$_2$ annealing and recovery heat-treatment processes. From the results of the P-V measurement, it could be concluded that Ir is one of the promising candidate as the electrode material for degradation resistance in the MFM structure using SBT thin films.

  • PDF

Properties of Chorismate Mutase from intrasporangium sp. (Intrasporangium속 방선균의 Chorismate Mutase 성질)

  • 조원대;신광순;최용진;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.4
    • /
    • pp.310-315
    • /
    • 1988
  • Two isoenzymes of chorismate mutase(E.C.5.4.99.5) designated as chorismate mutase I(CM I) and chorismate mutase II(CM II), were detected and partially purified from a sp. of intrasporangium isolated from soil. CM I and CM II had pH optima of pH 6.5 and 8.0, respectively and showed the same temperature optimum of 45$^{\circ}C$. The activation energy of the enzymatic reaction was estimated to be 14.7kcal/ mole with CM I and 10.8kcal/mole with CM II. The affinity of isoenzyme CM I for substrate(Km= 1.35mM) was almost the same level as that of CM II(Km = 1.22mM). Both isoenzymes were stable at pH values ranged from pH 6.5 to 9.0, but rapidly denaturated at temperatures above 45$^{\circ}C$. CM II was activated about 7$^{\circ}C$ of its activity by $Ba^{++}$ or $Mg^{++}$ while CM I was slightly inhibited by the same metal ions. Thiol compounds were found not to be necessary for stability of the two enzymes but Co$^{++}$ and EDTA had a little stabilizing effect on CM II only. p-Chloromercuribenzoate strongly inactivated the activities of both enzymes but the reducing agents such as dithiothreitol and L-cysteine protected them against the pCMB inhibition.

  • PDF

Improvement of DeNOx efficiency of SNCR Process with Chemical Additives in Urea Soution (환원제로 우레아를 사용하는 SNCR 공정에서 첨가제 적용에 따른 탈질효율 향상 연구)

  • Yoo, Kyung Seun;Park, Sung Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.663-668
    • /
    • 2017
  • Dye waste water generated in the dye industry is categorized as hazardous waste water that requires appropriate treatment. The pilot scale experimental trials were carried out using dye waste water as an effective additive for the selective non-catalytic reduction (SNCR) of NOx in combustion flue gases. The additives were waste liquor obtained from the dye industry and several purification steps were taken to make a standardized reagents. The dye waste water was shown to possess valuable SNCR qualities (at least 87% NOx reduction efficiency) considering its availability as a waste product, which has to be strictly treated, and have little effects on CO removal. The results indicated that the NO removal efficiency increased first and then decreased with increasing temperature within $750-1150^{\circ}C$. The maximum NO reduction efficiency was approximately 87% at the optimal reaction temperature. A more than 10% increase in NO reduction was achieved in the presence of 1000 ppm Na-additives (dye waste water) compared to that without additives. The Na-based additives have also a significant promoting effect on $N_2O$ reduction and within the SNCR temperature window.