DOI QR코드

DOI QR Code

CO and C3H8 Oxidations over Supported Co3O4, Pt and Co3O4-Pt Catalysts: Effect on Their Preparation Methods and Supports, and Catalyst Deactivation

Co3O4, Pt 및 Co3O4-Pt 담지 촉매상에서 CO/C3H8 산화반응: 담체 및 제조법에 따른 영향과 촉매 비활성화

  • Kim, Moon-Hyeon (Department of Environmental Engineering, Daegu University) ;
  • Kim, Dong-Woo (Department of Environmental Engineering, Daegu University) ;
  • Ham, Sung-Won (Department of Chemical Engineering, Kyungil University)
  • 김문현 (대구대학교 환경공학과) ;
  • 김동우 (대구대학교 환경공학과) ;
  • 함성원 (경일대학교 화학공학과)
  • Received : 2010.11.16
  • Accepted : 2011.01.04
  • Published : 2011.02.28

Abstract

$TiO_2$- and $SiO_2$-supported $Co_3O_4$, Pt and $Co_3O_4$-Pt catalysts have been studied for CO and $C_3H_8$ oxidations at temperatures less than $250^{\circ}C$ which is a lower limit of light-off temperatures to oxidize them during emission test cycles of gasoline-fueled automotives with TWCs (three-way catalytic converters) consisting mainly of Pt, Pd and Rh. All the catalysts after appropriate activation such as calcination at $350^{\circ}C$ and reduction at $400^{\circ}C$ exhibited significant dependence on both their preparation techniques and supports upon CO oxidation at chosen temperatures. A Pt/$TiO_2$ catalyst prepared by using an ion-exchange method (IE) has much better activity for such CO oxidation because of smaller Pt nanoparticles, compared to a supported Pt obtained via an incipient wetness (IW). Supported $Co_3O_4$-only catalysts are very active for CO oxidation even at $100^{\circ}C$, but the use of $TiO_2$ as a support and the IW technique give the best performances. These effects on supports and preparation methods were indicated for $Co_3O_4$-Pt catalysts. Based on activity profiles of CO oxidation at $100^{\circ}C$ over a physical mixture of supported Pt and $Co_3O_4$ after activation under different conditions, and typical light-off temperatures of CO and unburned hydrocarbons in common TWCs as tested for $C_3H_8$ oxidation at $250^{\circ}C$ with a Pt-exchanged $SiO_2$ catalyst, this study may offer an useful approach to substitute $Co_3O_4$ for a part of platinum group metals, particularly Pt, thereby lowering the usage of the precious metals.

Keywords

References

  1. Balenovic, M., Hoebink, J. H. B. J., Backx, A. C. P. M., Nievergeld, A. J. L., 1999, Modeling of an automotive exhaust gas converter at low temperatures aiming at control application, SAE paper No. 1999-01-3623.
  2. Bosteels, D., Searles, R., 2002, Exhaust emission catalyst technology, Plat. Met. Rev., 46, 27-36.
  3. Engler, B. H., Lindner, D., Lox, E. S., Ostgathe, K., Schafer-Sindlinger, A., Muller, W., 1993, Reduction of exhaust gas emissions by using hydrocarbon adsorber systems, SAE paper No. 930738.
  4. European Union (EU), 2005, Emission test cycles for the certification of light duty vehicles in Europe, Directive 90/C81/01 (amended).
  5. Farrauto, R. J., Heck, R. M., 1999, Catalytic converters: state of the art and perspectives, Catal. Today, 51, 351-360. https://doi.org/10.1016/S0920-5861(99)00024-3
  6. Johnson, M., 2010, Platinum 2009 interim review, Plat. Met. Rev., 54, 61-62. https://doi.org/10.1595/147106710X484241
  7. Jollie, D., 2009, Platinum 2009 Interim Review, ISSN 0268-7305, Johnson Matthey Precious Metals Marketing, Hertfordshire, UK.
  8. Kaspar, J., Fornasiero, P., Hickey, N., 2003, Automotive catalytic converters: current status and some perspectives, Catal. Today, 77, 419-449. https://doi.org/10.1016/S0920-5861(02)00384-X
  9. Kim, M. H., 2007, Current and future US Tier 2 vehicles program and catalytic emission control technologies to meet the future Tier 2 standards, Korean J. Chem. Eng., 24, 209-222. https://doi.org/10.1007/s11814-007-5032-1
  10. Kim, M. H., 2008, HCCI combustion engines with ultra low $CO_2\;and\;NO_x$ emissions and new catalytic emission control technology, J. Environ. Sci., 17, 1413-1419. https://doi.org/10.5322/JES.2008.17.12.1413
  11. Kim, M. H., Ebner, J. R., Friedman, R. M., Vannice, M. A., 2001, Dissociative $N_{2}O$ adsorption on supported Pt, J. Catal., 204, 348-357. https://doi.org/10.1006/jcat.2001.3410
  12. Kim, M. H., Ebner, J. R., Friedman, R. M., Vannice, M. A., 2002, Determination of metal dispersion and surface composition in supported Cu-Pt catalysts, J. Catal., 208, 381-392. https://doi.org/10.1006/jcat.2002.3569
  13. Kim, M. H., Ham, S. W., 2008, The formation of $Co_{n}TiO_{n+2}$ compounds in $CoO_{x}/TiO_{2}$ catalysts and their activity for low-temperature CO oxidation, J. Environ. Sci., 17, 933-941. https://doi.org/10.5322/JES.2008.17.8.933
  14. Kim, M. H., Kim, K. H., Kim, D. W., H., Ham, S. W., 2008, Parametric study on the durability of $CoO_x/TiO_2$ catalysts for low-temperature CO oxidation, Proceedings of 5th International Conference on Environmental Catalysis, CenTACat, Belfast, 449-449.
  15. Kim, M. H., Nam, I. S., 2005, New opportunity for HC-SCR technology to control $NO_x$ emission from advanced internal combustion engines, in: Spivey, J. J. (ed.), Specialist Periodical Reports: Catalysis, vol. 18, The Royal Society of Chemistry, Cambridge, 116-185.
  16. Koltsakis, G. C., Stamatelos, A. M., 1997, Catalytic automotive exhaust aftertreatment, Prog. Energy Combust. Sci., 23, 1-39. https://doi.org/10.1016/S0360-1285(97)00003-8
  17. Kreuzer, T., Lox, E. S., Lindner, D., Leyrer, J., 1996, Advanced exhaust gas aftertreatment systems for gasoline and diesel fuelled vehicles, Catal. Today, 29, 17-27. https://doi.org/10.1016/0920-5861(95)00254-5
  18. Mergler, Y. J., Hoebink, J., Nieuwenhuys, B. E., 1997, CO oxidation over a $Pt/CoO_x/SiO_2$ catalysts: A study using temporal analysis of products, J. Catal., 167, 305-313. https://doi.org/10.1006/jcat.1997.1599
  19. Mergler, Y. J., van Aalst, A., van Delft, J., Nieuwenhuys, B. E., 1996, Promoted Pt catalysts for automotive pollution control: Characterization of $Pt/SiO_2,\;Pt/CoO_x/SiO_2,\;and\;Pt/MnO_x/SiO_2$ catalysts, J. Catal., 161, 310-318. https://doi.org/10.1006/jcat.1996.0189
  20. Rijkeboer, R. C., 1991, Catalysts on cars - practical experience, Catal. Today, 11, 141-150. https://doi.org/10.1016/0920-5861(91)87014-E
  21. Skoglundh, M., Fridell, E., 2004, Strategies for enhancing low-temperature activity, Top. Catal., 28, 79-87. https://doi.org/10.1023/B:TOCA.0000024336.98281.0e
  22. Weib, W., Barbieri, A., Van Hove, M. A., Somorjai, G. A., 1993, Surface structure determination of an oxide film grown on a foreign substrate: $Fe_3O_4$ multilayer on Pt(111) identified by low energy electron diffraction, Phys. Rev. Lett., 71, 1848-1851. https://doi.org/10.1103/PhysRevLett.71.1848
  23. Xie, X., Li, Y., Liu, Z. Q., Haruta, M., Shen, W., 2009, Low-temperature oxidation of CO catalysed by $Co_{3}O_{4}$ nanorods, Nature, 458, 746-749. https://doi.org/10.1038/nature07877
  24. Yang, W. H., Kim, M. H., 2006, Catalytic reduction of $N_{2}O\;by\;H_2$ over well-characterized Pt surfaces, Korean J. Chem. Eng., 23, 908-918. https://doi.org/10.1007/s11814-006-0007-1
  25. Yang, W. H., Kim, M. H., Ham, S. W., 2007, Effect of calcination temperature on the low-temperature oxidation of CO over $CoO_{x}/TiO_{2}$ catalysts, Catal. Today, 123, 94-103. https://doi.org/10.1016/j.cattod.2007.01.048