• Title/Summary/Keyword: catalytic effect

Search Result 828, Processing Time 0.026 seconds

The Effect of Organic Solvents on the Activity for the Synthesis of 12wt% Co-based FT Catalyst (12wt% Co 담지 FT 촉매 제조시 유기용매가 촉매활성에 미치는 영향연구)

  • LEE, JIYUN;HAN, JA-RYOUNG;CHUNG, JONGTAE;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.4
    • /
    • pp.339-346
    • /
    • 2015
  • The synthesis of Fischer-Tropsch (FT) oil is the catalytic hydrogenation of CO to give a range of products, which can be used for the production of high-quality diesel fuel, gasoline and linear chemicals. This studied catalyst was prepared Cobalt-supported alumina and silica by the incipient wet impregnation of the nitrates of cobalt, promoter and organic solvent with supports. Cobalt catalysts were calcined at $350^{\circ}C$ before being loaded into the FT reactors. After the reduction of catalyst has been carried out under $450^{\circ}C$ for 24h, FT reaction of the catalyst has been carried out at GHSV of 4,000/hr under $200^{\circ}C$ and 20atm. From these experimental results, we have obtained the results as following; In case of $SiO_2$ catalysts, the activity of 12wt% $Cobalt-SiO_2$ synthesized by organic solvent was about 2 or 3 times higher than the activity of 12wt% $Cobalt-SiO_2$ catalyst synthesized without organic solvent. In particular, the activity of the $Cobalt-SiO_2$ catalyst prepared in the presence of an organic solvent P was two to three times higher than that of the $Cobalt-SiO_2$ catalyst prepared without the organic solvent. Effect of Cr and Cu metal as a promoter was found little. 200 h long-term activity test was performed with a $Co/SiO_2$ catalyst prepared in the presence of an organic solvent of Glyoxal solution.

Study on the Thermal Decomposition Behavior of[ABS/PC/Triphenyl Phosphate/Transition Metal Chloride] Compounds ([ABS/PC/Triphenyl Phosphate/Transition Metal Chloride] 컴파운드의 열분해 거동 연구)

  • Jang Junwon;Kim Jin-Hwan;Bae Jin-Young
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.338-343
    • /
    • 2005
  • The thermal degradation of ABS/PC/triphenyl phosphate compounds in the presence of transition metal chloride catalysts has been studied by thermogravimetric analysis (TGA). The reaction of transition metal chloride catalysts (cobalt chloride, ferric chloride, nickel chloride and zinc chloride) and ABS/PC/triphenyl phosphate compounds has been found to occur during the thermal degradation of the compounds. In a nitrogen atmosphere, char formation is observed, and $3\~13\%$of the reaction product is non-volatile at $600^{circ}$. The resulting enhancement of char formation in a nitrogen atmosphere has been explained as a catalytic crosslinking effect of transition metal chloride catalysts. On the other hand, transition metal chloride catalyzed char formation of ABS/PC/triphenyl phosphate compounds in air was unsuccessful due to the oxidative degradation of the char at a higher temperature.

Synthesis of 2,3-Dihydrobenzofuran Derivatives over HMCM-41 Catalysts (HMCM-41 촉매에서 2,3-Dihydrobenzofuran 유도체의 합성)

  • Kim, Hyung Jin;Seo, Gon;Kim, Jung-Nyun;Choi, Kyung Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.662-667
    • /
    • 2005
  • 2,3-Dihydrobenzofuran derivatives, important intermediates of medicines and agricultural chemicals, were prepared from aryl methallyl ethers over MCM-41 mesoporous material catalysts. Two mesoporous materials with Si/Al mole ratios of 40 and 50 were prepared to investigate the effect of acid site concentration on their catalytic activities. Aryl methallyl ethers with various substituents on their benzene rings were used to investigate the effect of electron density on benzene ring on the conversion of the ethers and the yield of 2,3-dihydorbenzofuran derivatives. The catalyst with a high acid site concentration showed high conversions, but it is difficult to correlate the yield of the derivatives with the acid site concentration. The increase in the electron density of the benzene ring by introducing electron-donating groups accelerated Claisen rearrangement reaction, resulting in the enhanced yield of the derivatives. On the other hand, the decrease in the electron density by introducing electron-attracting groups accelerated the cracking reaction of aryl methallyl ether by acid catalysts, producing phenol derivatives rather than 2,3-dihydrobenzofuran derivatives.

Cat-CVD법을 이용하여 다양한 제막압력 조건에서 증착된 PTFE(polytetrafluoroethylene) 박막의 소수성 평가에 관한 연구

  • Alghusun, Mohammad;Yeo, Seung-Jun;An, Jeong-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.281-281
    • /
    • 2012
  • 연꽃잎 효과(Lotus effect)라 불리는 자가 세정 효과(self cleaning effect)는 연꽃이 항상 깨끗한 상태를 유지하는 것이 관찰되면서 꾸준히 관심에 대상이 되어 왔었다. 자가 세정 효과는 접촉각 $150^{\circ}$ 이상의 초소수성 표면에서 구현이 가능하며 이런 표면을 일상생활부터 산업분야까지 응용하고자 하는 많은 노력들이 있었다. 물질의 친수성 또는 소수성은 표면의 거칠기(roughness)와 표면에너지(surface energy)의 두 가지 특성에 의해 결정된다. 하지만 낮은 표면에너지 물질을 사용해도 접촉각 $150^{\circ}$ 이상의 초소수성 표면을 얻긴 힘들며, 표면의 거칠기를 증가시켜야 한다. PTFE (polytetrafluoroethylene)는 낮은 표면에너지를 가진 소수성 물질로 bulk일 경우 접촉각이 약 $108^{\circ}$이지만 거친 표면을 가진 박막으로 만들 경우 접촉각이 $150^{\circ}$ 이상의 값을 가지는 초수수성 표면이 가능한 물질이다. 특히, 초소수성 표면 이외에 우수한 내열성 및 내화학성 특성을 가지고 있어 디스플레이 및 태양전지 등의 자가세정(self cleaning) 보호막으로써 응용이 기대되고 있다. 본 연구에서는 HFPO (hexafluoropropylene)를 원료 가스로 이용하여, Si(100)과 유리 기판위에 Cat-CVD (Catalytic Chemical Vapor Deposition)법으로 PTFE 박막을 증착하였다. 텅스텐(W)을 촉매로 사용하였으며, 촉매온도가 $850^{\circ}C$이상인 조건에서 접촉각이 $150^{\circ}$ 이상인 초소수성 PTFE 표면을 쉽게 얻을 수 있었다. 특히 본 연구에서는 제막압력을 300 mTorr에서 700 mTorr까지 변화시켜 가며 유리와 Si 기판위에 증착하였다. Cat-CVD 제막압력을 변화시켜가며 증착된 PTFE 박막의 접촉각을 측정한 결과, 제막압력이 300 mTorr일 때 glass와 Si 기판위에 증착된 PTFE박막 표면에서의 접촉각은 각각 133, $117^{\circ}$였지만, 제막압력이 400 mTorr이상일 땐 $150^{\circ}$ 이상의 높은 접촉각을 갖는 초소수성 표면을 얻을 수 있었다.

  • PDF

A Effect of H2O-H2 Pretreatment on VOCs Oxidation over Noble Catalysts on Titania (티타니아에 담지된 귀금속촉매의 H2O-H2 전처리에 따른 휘발성유기화합물 산화에 미치는 영향)

  • Kim, Moon-Chan;Ko, Sun-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.552-556
    • /
    • 2007
  • In this study, noble metals (Pd, Ru, Ir) were supported to $TiO_2$ catalyst. In order to distribute metals uniformly, $H_2O-H_2$ pretreatment technique was used. Xylene, toluene, and MEK were used as reactants. The monometallic or bimetallic catalysts were prepared by the excess wetness impregnation method and were characterized by XRD, and XPS analysis. Pd-Ru, Pd-Ir bimetallic catalysts had multipoint active sites which improved the range of Pd metal state. Bimetallic catalysts had a higher conversion of VOCs than that of monometallic one. The effect of $H_2O-H_2$ pretreatment technique was the enhancement of uniform distribution of Pd particles and promotion of catalytic efficiency. In this study, addition of Ru and Ir metals to Pd promoted oxidation conversion of VOCs. In addition, $H_2O-H_2$ pretreatment promoted removal efficiency of VOCs on the $TiO_2$ support.

The Effect of Oxygen in Low Temperature SCR over Mn/$TiO_2$ Catalyst (Mn/$TiO_2$ 촉매를 이용한 저온 SCR 반응에서 산소의 영향)

  • Lee, Sang Moon;Choi, Hyun Jin;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.119-123
    • /
    • 2012
  • This study presents the effect of oxygen on the $NH_3$ selective catalytic reduction (SCR) by Mn/$TiO_2$ catalyst. The lattice oxygen of catalysts is participate in the low temperature SCR, and the gaseous oxygen directly takes part in the rexoidtion of reduced catalyst. These redox properties of oxygen an play important role in SCR activity and the available capability of lattice oxygen depends on the manganese oxidation state of the catalyst surface. $MnO_2$ species has a higher redox property than that of $Mn_2O_3$ species on deposited $TiO_2$ surface and these manganese oxide states strongly depend on the $TiO_2$ surface area.

Prediction of Reaction Performance of Pentafluoropropene Hydrogenation for Environmentally Friendly Refrigerant Production (친환경 냉매 제조를 위한 오불화프로펜 수소화반응에 대한 예측)

  • Yun, Mi Hee;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.573-576
    • /
    • 2016
  • In this study, hydrogenation of 1,2,3,3,3-pentafluoropropene was performed to produce R-1234yf as an environmentally friendly refrigerant. Palladium based carbon was prepared as a catalyst in the hydrogenation reaction. The effect of reaction conditions including the weight hourly space velocity (WHSV), reaction temperature and ratio of hydrogen and reactants on the catalytic performance was investigated. Under the identical reaction conditions, the effect of WHSV on the main product selectivity was insignificant, but a high reaction temperature was essential for the good product selectivity. A high product selectivity was also obtained when the ratio of hydrogen and reactants kept less than 1.5. Moreover, a correlation model involving the statistical approach to predict product yields was developed.

Numerical Study on the Injector Shape and Location of Urea-SCR System of Heavy-duty Diesel Engine for Preventing $NH_3$ Slip (대형 디젤엔진용 SCR 시스템의 암모니아 슬립 억제를 위한 인젝터의 형상 및 위치에 관한 수치적 연구)

  • Jeong Soo-Jin;Lee Sang Jin;Kim Woo-Seung;Lee Chun Beom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.68-78
    • /
    • 2006
  • In the past few years, considerable efforts have been directed towards the further development of Urea-SCR(selective catalytic reduction) technique for diesel-driven vehicle. Although urea possesses considerable advantages over Ammonia$(NH_3)$ in terms of toxicity and handling, its necessary decomposition into Ammonia and carbon dioxide complicates the DeNOx process. Moreover, a mobile SCR system has only a short distance between engine exhaust and the catalyst entrance. Hence, this leads to not enough residence times of urea, and therefore evaporation and thermolysis cannot be completed at the catalyst entrance. This may cause high secondary emissions of Ammonia and isocyanic acid from the reducing agent and also leads to the fact that a considerable section of the catalyst may be misused for the purely thermal steps of water evaporation and thermolysis of urea. Hence the key factor to implementation of SCR technology on automobile is fast thermolysis, good mixing of Ammonia and gas, and reducing Ammonia slip. In this context, this study performs three-dimensional numerical simulation of urea injection of heavy-duty diesel engine under various injection pressure, injector locations and number of injector hole. This study employs Eulerian-Lagrangian approach to consider break-up, evaporation and heat and mass-transfer between droplet and exhaust gas with considering thermolysis and the turbulence dispersion effect of droplet. The SCR-monolith brick has been treated as porous medium. The effect of location and number of hole of urea injector on the uniformity of Ammonia concentration distribution and the amount of water at the entrance of SCR-monolith has been examined in detail under various injection pressures. The present results show useful guidelines for the optimum design of urea injector for reducing Ammonia slip and improving DeNOx performance.

The Effect of Alkali Metal Ions (Na, K) on NH3-SCR Response of V/W/TiO2 (알칼리 금속 이온(Na, K)이 V/W/TiO2의 NH3-SCR 반응인자에 미치는 영향)

  • Yeo, Jonghyeon;Hong, Sungchang
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.560-567
    • /
    • 2020
  • In this study, we investigated that the effect of alkali metals [Na(Sodium) and K(Potassium)], known as representative deactivating substances among exhaust gases of various industrial processes, on the NH3-SCR (selective catalytic reduction) reaction of V/W/TiO2 catalysts. NO, NH3-TPD (temperature programmed desorption), DRIFT (diffuse reflectance infrared fourier transform spectroscopy analysis), and H2-TPR analysis were performed to determine the cause of the decrease in activity. As a result, each alkali metal acts as a catalyst poisoning, reducing the amount of NH3 adsorption, and Na and K reduce the SCR reaction by reducing the L and B acid points that contribute to the reaction activity of the catalyst. Through the H2-TPR analysis, the alkali metal is considered to be the cause of the decrease in activity because the reduction temperature rises to a high temperature by affecting the reduction temperature of V-O-V (bridge oxygen bond) and V=O (terminal bond).

Study on the Improvement of the Electrochemical Characteristics of Surface-modified V-Ti-Cr alloy by Ball-milling

  • Kim, Jin-Ho;Lee, Sang-Min;Lee, Ho;Lee, Paul S.;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.1
    • /
    • pp.39-50
    • /
    • 2001
  • Vanadium based solid solution alloys have been studied as a potential negative electrode of Ni/MH battery due to their high hydrogen storage capacity. In order to improve the kinetic property of V-Ti alloy in KOH electrolyte, the ball-milling process with Ni, which has a catalytic effect of hydrogen absorption/desorption, was carried out to modify the surface properties of V-Ti-Cr alloys with high hydrogen storage capacity. Moreover, to overcome the problem of poor cycle life, V-Ti alloy substituted by Cr, V0.68 Ti0.20 Cr0.12, has been developed showing a good cycle performance (keeping about 80 % of initial discharge capacity after 200 cycles). The cycle life of surface-modified V0.68 Ti0.20 Cr0.12 alloy was improved by suppressing the formation of TiO2 layer on the alloy surface while decreasing the amount of dissolved vanadium in the KOH electrolyte. In order to promote the effect of Ni coating on the surface property of V0.68 Ti 0.20 Cr 0.12 alloy by ball-milling, filamentary-typed Ni, which has higher surface coverage area than sphere-typed Ni was used as a surface modifier. Consequently, the surface-modified V0.68 Ti0.20 Cr0.12 alloy electrode showed a improved discharge capacity of 460 mAh/g.

  • PDF