[ABS/PC/Triphenyl Phosphate/Transition Metal Chloride] 컴파운드의 열분해 거동 연구

Study on the Thermal Decomposition Behavior of[ABS/PC/Triphenyl Phosphate/Transition Metal Chloride] Compounds

  • 장준원 (성균관대학교 응용화학부, 고분자기술연구소) ;
  • 김진환 (성균관대학교 응용화학부, 고분자기술연구소) ;
  • 배진영 (성균관대학교 응용화학부, 고분자기술연구소)
  • Jang Junwon (College of Applied Chemistry, Polymer Technology Institute, Sungkyunkwan University) ;
  • Kim Jin-Hwan (College of Applied Chemistry, Polymer Technology Institute, Sungkyunkwan University) ;
  • Bae Jin-Young (College of Applied Chemistry, Polymer Technology Institute, Sungkyunkwan University)
  • 발행 : 2005.07.01

초록

Chloride계 전이금속 촉매의 존재 하에서 ABS/PC/triphenyl phosphate 컴파운드의 열분해 거동을 TGA(thermogravimetric analysis)를 통해서 조사하였다. Chloiide계 전이금속 촉매(cobalt chloiide, ferric chloride, nickel chloride 및 zinc chloride)는 ABS/PC/triphenyl phosphate 컴파운드의 열분해 과정에서 화학반응을 야기하여, 질소분위기에서 숯(char) 형성이 관찰되었으며, $600^{circ}C$에서 $3\~l3\%$의 비휘발성 눈을 형성하였다. 이와 같은 질소분위기에서의 ABS/PC/triphenyl phosphate 컴파운드의 숯 생성은 chloride계 전이금속 촉매의 가교효과(crosslinking effect)로 추정된다. 한편, 공기분위기에서는 생성된 숯은 고온 산화반응에 의해서 역분해되었다.

The thermal degradation of ABS/PC/triphenyl phosphate compounds in the presence of transition metal chloride catalysts has been studied by thermogravimetric analysis (TGA). The reaction of transition metal chloride catalysts (cobalt chloride, ferric chloride, nickel chloride and zinc chloride) and ABS/PC/triphenyl phosphate compounds has been found to occur during the thermal degradation of the compounds. In a nitrogen atmosphere, char formation is observed, and $3\~13\%$of the reaction product is non-volatile at $600^{circ}$. The resulting enhancement of char formation in a nitrogen atmosphere has been explained as a catalytic crosslinking effect of transition metal chloride catalysts. On the other hand, transition metal chloride catalyzed char formation of ABS/PC/triphenyl phosphate compounds in air was unsuccessful due to the oxidative degradation of the char at a higher temperature.

키워드

참고문헌

  1. E. M. Pearce, Improved Fire- and Smoke-Resistant Materials for Commercial Aircraft Interiors, Washington, DC, National Academy Press, 1995
  2. G. Nelson, Fire and Polymers, ACS Symposium Series 599, Washington, DC, American Chemical Society, 1995
  3. B. Martel, J. Appl. Polym. Sci., 35, 1213 (1998)
  4. P. John and D. A. Charpy, Polym. Testing, 19,569 (2000) https://doi.org/10.1016/S0142-9418(99)00027-6
  5. M. Lewin, S. M. Atlas, and E. M. Pearce, Flame-Retardant Polymer Materials, Plenum Press, N. Y, 1975
  6. I. Finberg, Y. B. Yaakov, and P. Georlette, Polym. Degrad. Stab., 64, 465 (1999) https://doi.org/10.1016/S0141-3910(98)00138-4
  7. P. Carty and S. White, Polym. Degrad. Stab., 54, 379 (1996) https://doi.org/10.1016/S0141-3910(96)00066-3
  8. M. Suzuki and C. A. Wilkie, Polym. Degrad. Stab., 47, 217 (1995) https://doi.org/10.1016/0141-3910(94)00122-O
  9. W J. Kronke, J. Appl. Polym. Sci., 26, 1167 (1981) https://doi.org/10.1002/app.1981.070260411
  10. S. Miyata, US Patent 5,401,442 (1995)
  11. S. Miyata, US Patent 5,571,526 (1996)
  12. H. Marsh, D. Crawford, and D. W. Taylor, Carbon, 21, 81 (1983) https://doi.org/10.1016/0008-6223(83)90160-4
  13. P. Carty and S. White, Fire Mater, 18,151 (1994) https://doi.org/10.1002/fam.810180303
  14. W. P. Whelan Jr., J. Fire Retard. Chem., 6,206 (1979)
  15. P. Carty, E. Metcalfe, and W. N. Annison, J. Appl. Polym. Sci., 41, 901 (1990) https://doi.org/10.1002/app.1990.070410502
  16. P. Carty and A. Docherty, Fire Mater., 12, 109 (1988) https://doi.org/10.1002/fam.810120305