Synthesis and Properties of Polyester System Polyurethane without Solvent

무용제 반응에 의한 폴리에스테르계 폴리우레탄의 합성 및 특성

  • Kwak Noh-Seok (Department of Chemical Engineering, College of Engineering) ;
  • Yang Yun-Kyu (Department of Chemical Engineering, College of Engineering) ;
  • Jeong Boo-Young (Department of Chemical Engineering, College of Engineering) ;
  • Hwang Taek-Sung (Department of Chemical Engineering, College of Engineering)
  • 곽노석 (충남대학교 공과대학 화학공학과) ;
  • 양윤규 (충남대학교 공과대학 화학공학과) ;
  • 정부영 (충남대학교 공과대학 화학공학과) ;
  • 황택성 (충남대학교 공과대학 화학공학과)
  • Published : 2005.07.01

Abstract

Polyurethanes(PUs) were synthesized by reaction of isophorone diisocyanate, acetylbutyl citrate, and 3 types of polycaprolactone diol. Their structures were confirmed by FT-IR and NMR spectrometer. And, their thermal and mechanical properties were measured by TGA ud UTM. The effective network chain lengths ($\bar{M}_c$), measured by compressive modulus apparatus, were about $8000\~24000$ g/mol. As crosslinking density and amount of hard segment increased, tensile strength increased and elongation decreased. As the crosslinking density of PUs increased, thermal property inproved. When the ratio of NCO/OH is 1.1, maximum crosslinking density was achieved.

분자량이 다른 여러 종류의 폴리카프로락톤 디올(polycaprolactone diol), 폴리카프로락톤 트리올(polycaprolactone triol), acetylbutyl citrate 가소제, isophorone diisocyanate 경화제를 이용하여 폴리우레탄을 합성하였다. 합성된 폴리우레탄의 구조를 FT-IR, NMR 스펙트럼 분석을 통하여 확인하였고 TGA와 UTM을 이용하여 열특성 및 인장강도 연신율을 측정하였다. Compressive modulus를 사용하여 측정한 결과, 합성한 폴리우레탄의 가교 평균 분자량은 $8000\~24000$이었다. 분자 내 가교밀도 및 하드 세그먼트의 양이 증가할수록 인장강도가 증가하고 연신율이 감소하였으며, 폴리우레탄내의 가교밀도가 증가할수록 열 안정성이 향상되었다. 가교밀도는 NCO/OH의 비가 1.1에서 최대값을 나타내었고, 디올의 함량과 분자량이 클수록 증가하였다.

Keywords

References

  1. Z. Wirpsza, Polyurethanes Chemistry, Technology and Applications, Ellis Horwood, New York, 1993
  2. Gunter Oertel, Polyurethane Handbook, Hanser, Cincinnati, 1994
  3. J. Y. Ko, K. J. Seo, S. Y. Kwon, J. P. Wu, and H. S. Park, Polymer(Korea), 22, 756(1998)
  4. C. Hepburn, Polyurethane Handbook, Elsevier Science Publishing Co., New York, 1992
  5. J. B. Ahn, H. K. Cho, C. N. Jeong, and S. T. Noh, J. of Korean Ind. Eng. Chem., 8, 230 (1989)
  6. S. G. Kang, B. G. Song, J. H. Lee, C. J. Park, and H. Ryu, J. of Korean Ind. Eng. Chem., 14, 325 (2003)
  7. D. J. Davis and H. B. Staley, Analytical Chemistry of Polyurethane, Wiley-Interscience, New York, 1969
  8. C. Hepburn, Polyurethane Elastomers, Applied Science Publishers, New York, 1982
  9. B. Y. Park, K. S. Maeng, J. W. Lee, and J. K. Yeo, Polymer(Korea), 9, 59 (1985)
  10. E. F. Cluff, E. K. Gladding, and R. Pariser, J. Polym. Sci., 45, 341 (1960) https://doi.org/10.1002/pol.1960.1204514605
  11. D. M. French, J. Appl. Polym. Sci.,25,665 (1980) https://doi.org/10.1002/app.1980.070250413
  12. K. W. Bills, Jr., and F. S. Salcedo, J. Appl. Phys., 32,2364 (1962) https://doi.org/10.1063/1.1736146
  13. C. J. Pouchert, The Aldrich Library of Infrared Spectra, Aldrich Chemical Co., Milwaukee, 1975
  14. W. Fresenius J. F. K. Huber, E. Pungor, G. A. Rechnitz, W. Simon, and Th. S. West, Spectral Data for Structure Determination of Organic Compounds, Springer-Verlag, Berlin, 1989
  15. T. K. Kwei, J. Appl. Polym. Sci, 27, 2891 (1982) https://doi.org/10.1002/app.1982.070270815
  16. A. W. McLennaghan and R. A. Petherick, Eur. Polym. J., 24, 1063 (1988) https://doi.org/10.1016/0014-3057(88)90066-3
  17. J. Xiao, H. X. Xiao, K. C. Frisch, and N. Malwitz, J. Appl. Polym. Sci., 54, 1643 (1994) https://doi.org/10.1002/app.1994.070541107