• Title/Summary/Keyword: catalytic decomposition

Search Result 319, Processing Time 0.033 seconds

$SO_3$ decomposition over Cu/Fe/$Al_2O_3$ granules with controlled size for hydrogen production in SI thermochemical cycle (황-요오도 열화학 수소제조 공정에서 다양한 크기의 Cu/Fe/$Al_2O_3$ 구형 촉매를 이용한 삼산화항 분해)

  • Yoo, Kye-Sang;Jung, Kwang-Deog
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.3
    • /
    • pp.226-231
    • /
    • 2008
  • Cu/Fe/$Al_2O_3$ granules with various sizes have been prepared by a combination of sol-gel and oil drop method for the use in sulfur trioxide decomposition, a subcycle in thermochemical sulfur-iodine cycle to split water in the hydrogen and oxygen. The size of composite granules have been mainly changed by the flow-rate of the gel mixture before dropping in the synthesis. The structural properties of the samples were comparable with granule size. In the reaction, the catalytic activity was enhanced by decreasing size in the entire reaction temperature ranges.

EFFECTS OF H2O2, TURBIDITY AND METALS ON SONOCHEMICAL DECOMPOSITION OF HUMIC SUBSTANCES IN WASTEWATER EFFLUENT

  • Kim, Il-Kyu
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.3
    • /
    • pp.271-282
    • /
    • 2002
  • The sonochemical process has been applied as a treatment method to investigate its effect on the decomposition of humic substances (HS). The reaction kinetics and mechanisms in the process of sonochemical treatment for humic substances in wastewater have also been discussed. It was observed that the metal ions such Fe(II) and Mn(II) showed catalytic effects, while Al(III), Ca(II), and Mg(II) had inhibitory effects on the decomposition of humic substances in sonochemical reaction with hydrogen peroxide. Experimental results also showed factors such as hydrogen peroxide dose affected the formation of disinfection by-products. Two trihalomethanes, chloroform and dichlorobromomethane were formed as major disinfection by-products during chlorination. The depolymerization and the radical reaction of HS radicals appear to occur simultaneously. The final step of the reaction is the conversion of organic acids to carbon dioxide.

Effect of $H_2O_2$ and Metals on The Sonochemical Decomposition of Humic Substances in Wastewater Effluent

  • Jung, Oh-Jun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_3
    • /
    • pp.127-137
    • /
    • 2001
  • The sonochemical Process has been applied as a treatment method and was investigated its effect on the decomposition of humic substances(HS). The reaction kinetics and mechanisms in the Process of sonochemical treatment for humic substances(HS) in wastewater have also been discussed. It was observed that the metal ions such as Fe(II) and Mn(II) showed catalytic effects, while Al(III), Ca(II), and Mg(II) had inhibitory effects on the decomposition of humic substances in sonochemical reaction with hydrogen peroxide. Experimental results also showed factors such as hydrogen peroxide dose affected the formation of disinfection by-products. Two trihalomethanes, chloroform and dichlorobromomethane were formed as major disinfection by-products during chlorination. The mechanism of radical reaction is controlled by an oxidation process. The radicals are so reactive that most of them are consumed by HS radicals and hydroxyl radicals can be acted on organic solutes by hydroxyl addition, hydrogen abstraction, and electron transfer. The depolymerization and the radical reaction of HS radicals appear to occur simultaneously. The final steps of the reaction are the conversion of organic acids to carbon dioxide.

  • PDF

Electrochemical Decomposition Characteristics of Ammonia by the Catalytic Oxide Electrodes (촉매성 산화물 전극에 의한 암모니아의 전기 화학적 분해 특성)

  • Kim, Kwang-Wook;Kim, Young-Jun;Kim, In-Tae;Park, Gun-Ill;Lee, Eil-Hee
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.9-15
    • /
    • 2005
  • In order to know the electrochemical decomposition characteristics of ammonia to nitrogen, this work has studied several experimental variables on the electrolytic ammonia decomposition. The effects of pH and chloride ion at $IrO_2$, $RuO_2$, and Pt anodes on the electrolytic decomposition of ammonia were compared, and the existence of membrane equipped in the cell and the changes of the current density, the initial ammonia concentration and so on were investigated on the decomposition. The performances of the electrode were totally in order of $RuO_2{\approx}IrO_2>Pt$ in the both of acid and alkali conditions, and the ammonia decomposition was the highest at a current density of $80mA/cm^2$, over which it decreased, because the adsorption of ammonia on the electrode surface was hindered due to the evolution of oxygen. The ammonia decomposition increased with the concentration of chloride ion in the solution. However, the increase became much dull over 10 g/l of chloride ion. The $RuO_2$ electrode among the tested electrodes generated the most OH radicals which could oxidized the ammonium ion at pH 7.

K Addition Effect of Co3O4-based Catalyst for N2O Decomposition (N2O 분해반응용 Co3O4 기반 촉매의 K첨가 효과)

  • Hwang, Ra Hyun;Park, Ji Hye;Baek, Jeong Hun;Im, Hyo Been;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.35-40
    • /
    • 2018
  • $Co_3O_4$ catalysts for $N_2O$ decomposition were prepared by co-precipitation method. Ce and Zr were added during the preparation of the catalyst as promoter with the molar ratio (Ce or Zr) / Co = 0.05. Also, 1 wt% $K_2CO_3$ was doped to the prepared catalyst with impregnation method to investigate the effect of K on the catalyst performance. The prepared catalysts were characterized with SEM, BET, XRD, XPS and $H_2-TPR$. The $Co_3O_4$ catalyst exhibited a spinel crystal phase, and the addition of the promoter increased the specific surface area and reduced the particle and crystal size. It was confirmed that the doping of K improves the catalytic activity by increasing the concentration of $Co^{2+}$ in the catalyst which is an active site for catalytic reaction. The catalytic activity tests were carried out at a GHSV of $45,000h^{-1}$ and a temperature range of $250{\sim}375^{\circ}C$. The K-impregnated $Co_3O_4$ catalyst showed much higher activity than $Co_3O_4$ catalysts with promoter only. It is found that the K-impregnation increased the concentration of $Co^{2+}$ more than the added of promoter did, and lowered the reduction temperature to a great extent.

Catalytic Decomposition of Hydrogen Peroxide for Application on Micro Propulsion (마이크로 추력기 응용을 위한 과산화수소 촉매 분해 반응)

  • An Sung-Yong;Lee Jong-Kwang;Rang Seong-Min;Kwon Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.266-271
    • /
    • 2005
  • An experimental investigation of a microthruster using hydrogen peroxide as a monopropellant is described. The study comprises of preparation method of silver as a catalyst and performance evaluation of a catalytic reaction chamber. Silver was reduced in $H_2$ environment at $500^{\circ}C$. The catalytic reaction chamber was tested to determine the optimum configuration of the catalyst bed. The catalyst bed was made of a glass wafer substrate sputtered with silver and had a length of 20 mm. The conversion rate was measured with various residence time, catalyst bed temperature, catalytic coated area.

  • PDF

The effect of the modification methods on the catalytic performance of activated carbon supported CuO-ZnO catalysts

  • Duan, Huamei;Yang, Yunxia;Patel, Jim;Burke, Nick;Zhai, Yuchun;Webley, Paul A.;Chen, Dengfu;Long, Mujun
    • Carbon letters
    • /
    • v.25
    • /
    • pp.33-42
    • /
    • 2018
  • Activated carbon (AC) was modified by ammonium persulphate or nitric acid, respectively. AC and the modified materials were used as catalyst supports. The oxygen groups were introduced in the supports during the modifications. All the supports were characterized by $N_2$-physisorption, Raman, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis. Methanol synthesis catalysts were prepared through wet impregnation of copper nitrate and zinc nitrate on the supports followed by thermal decomposition. These catalysts were measured by the means of $N_2$-physisorption, X-ray diffraction, XPS, temperature programmed reduction and TEM tests. The catalytic performances of the prepared catalysts were compared with a commercial catalyst (CZA) in this work. The results showed that the methanol production rate of AC-CZ ($23mmol-CH_3OH/(g-Cu{\cdot}h)$) was higher, on Cu loading basis, than that of CZA ($9mmol-CH_3OH/(g-Cu{\cdot}h)$). We also found that the modification methods produced strong metal-support interactions leading to poor catalytic performance. AC without any modification can prompt the catalytic performance of the resulted catalyst.

Decomposition of Toluene by γ-Al2O3 Catalysts Impregnated with Transition Metal (전이금속을 함침한 γ-Al2O3 촉매의 Toluene 분해)

  • Choi, Sung-Woo;Lee, Chul-Kyu
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.945-951
    • /
    • 2013
  • Alumina-supported catalysts containing different transition metals such as Cu, Cr, Mn, Zn, Co, W were investigated for their activity in the selective oxidation of toluene. Catalytic oxidation of toluene was investigated at atmospheric pressure in a fixed bed flow reactor system over transition metals with $Al_2O_3$ catalyst. The result showed the order of catalytic activities for the complete oxidation of toluene was Mn > Cu> Cr> Co> W> Zn for 5wt.% transition $metals/Al_2O_3$. $Mn/Al_2O_3$ catalysts containing different amount of Mn were characterized by X-ray diffraction spectroscopy for decision of loading amount of metal to alumina. 5 wt.%$Mn/Al_2O_3$ catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of $289^{\circ}C$.

Catalytic Reactor of Hydrogen Peroxide for a Micro Thruster (마이크로 추력장치용 과산화수소 촉매 반응기)

  • Lee, Dae-Hun;Cho, Jeong-Hun;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.237-240
    • /
    • 2002
  • Micro catalytic reactors are alternative propulsion device that can be used on a nano satellite. When used with a monopropellant, $H_2O_2$, a micro catalytic reactor needs only one supply system as the monopropellant reacts spontaneously on contact with catalyst and releases heat without external ignition, while separate supply lines for fuel and oxidizer are needed for a bipropellant rocket engine. Additionally, $H_2O_2$ is in liquid phase at room temperature, eliminating the burden of storage for gaseous fuel and carburetion of liquid fuel. In order to design a micro catalytic reactor, an appropriate catalyst material must be selected. Considering the safety concern in handling the monopropellants and reaction performance of catalyst, we selected hydrogen peroxide at volume concentration of 70% and perovskite redox catalyst of lantanium cobaltate doped with strondium. Perovskite catalysts are known to have superior reactivity in reduction-oxidation chemical processes. In particular, lantanium cobaltate has better performance in chemical reactions involving oxygen atom exchange than other perovskite materials. In the present study, a process to prepare perovskite type catalyst, $La_{0.8}Sr_{0.2}CoO_3$, and measurement of its propellant decomposition performance in a test reactor are described.

  • PDF

N2O Decomposition Characteristics of Dual Bed Mixed Metal Oxide Catalytic System using Partial Oxidation of Methane (메탄의 부분산화를 이용한 이중 혼합금속산화물 촉매 반응시스템의 N2O 분해 특성 연구)

  • Lee, Nan Young;Woo, Je-Wan
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.82-87
    • /
    • 2008
  • $N_2O$ decomposition characteristics of dual bed mixed metal oxide catalytic system was investigated. The partial oxidation of methane at first reactor of dual bed catalytic system was performed over Co-Rh-Al (1/0.2/1) catalyst under the optimized condition of $8,000h^{-1}$ GHSV, gas ratio ($CH_4:O_2=5:1$) at $500^{\circ}C$. In the dual bed system investigated herein, the second catalyst bed was employed for the $N_2O$ decomposition using product of partial oxidation of methane at first bed. An excellent $N_2O$ conversion activity even at lower temperature ($<250^{\circ}C$) was obtained with Co-Rh-Al (1/0.2/1) or Co-Rh-Zr-Al (1/0.2/0.3/1) catalyst by combining Co-Rh-Al (1/0.2/1) hydrotalcite catalyst for the partial oxidation of methane in a dual-bed system. The $N_2O$ conversion activity is drastically reduced in the presence of oxygen in second bed of a dual-bed system over Co-Rh-Al (1/0.2/1) catalyst at $300^{\circ}C$.