Ji, Hoon;Naveen, Kanagaraj;Kim, Dongwoo;Cho, Deug-Hee
Applied Chemistry for Engineering
/
v.31
no.3
/
pp.258-266
/
2020
The chemical fixation of CO2 into cyclic carbonates is considered to be one of the most promising way to alleviate global warming and produce fine chemicals. In this work, the catalytic applicability of metal-organic frameworks (MOFs) as porous crystalline materials for the synthesis of five-membered cyclic carbonate from CO2 and epoxides was reviewed. In addition, we have briefly classified the materials based on their different structural features and compositions. The studies revealed that MOFs exhibited good catalytic performance towards cyclic carbonate synthesis because of the synergistic effect between the acid sites of MOFs and nucleophile. Moreover, the effect of structure of designed MOFs and mechanism for the cycloaddition of CO2 were suggested.
You, Eunae;Jeong, Jangho;Lee, Jieun;Keum, Seula;Hwang, Ye Eun;Choi, Jee-Hye;Rhee, Sangmyung
BMB Reports
/
v.55
no.4
/
pp.192-197
/
2022
Cell signals for growth factors depend on the mechanical properties of the extracellular matrix (ECM) surrounding the cells. Microtubule acetylation is involved in the transforming growth factor (TGF)-β-induced myofibroblast differentiation in the soft ECM. However, the mechanism of activation of α-tubulin acetyltransferase 1 (α-TAT1), a major α-tubulin acetyltransferase, in the soft ECM is not well defined. Here, we found that casein kinase 2 (CK2) is required for the TGF-β-induced activation of α-TAT1 that promotes microtubule acetylation in the soft matrix. Genetic mutation and pharmacological inhibition of CK2 catalytic activity specifically reduced microtubule acetylation in the cells cultured on a soft matrix rather than those cultured on a stiff matrix. Immunoprecipitation analysis showed that CK2α, a catalytic subunit of CK2, directly bound to the C-terminal domain of α-TAT1, and this interaction was more prominent in the cells cultured on the soft matrix. Moreover, the substitution of alanine with serine, the 236th amino acid located at the C-terminus, which contains the CK2-binding site of α-TAT1, significantly abrogated the TGF-β-induced microtubule acetylation in the soft matrix, indicating that the successful binding of CK2 and the C-terminus of α-TAT1 led to the phosphorylation of serine at the 236th position of amino acids in α-TAT1 and regulation of its catalytic activity. Taken together, our findings provide novel insights into the molecular mechanisms underlying the TGF-β-induced activation of α-TAT1 in a soft matrix.
Min, Kyungjin;Yoon, Hye-Jin;Matsuura, Atsushi;Kim, Yong Hwan;Lee, Hyung Ho
Molecules and Cells
/
v.41
no.4
/
pp.331-341
/
2018
L-pipecolic acid is a non-protein amino acid commonly found in plants, animals, and microorganisms. It is a well-known precursor to numerous microbial secondary metabolites and pharmaceuticals, including anticancer agents, immunosuppressants, and several antibiotics. Lysine cyclodeaminase (LCD) catalyzes ${\beta}$-deamination of L-lysine into L-pipecolic acid using ${\beta}$-nicotinamide adenine dinucleotide as a cofactor. Expression of a human homolog of LCD, ${\mu}$-crystallin, is elevated in prostate cancer patients. To understand the structural features and catalytic mechanisms of LCD, we determined the crystal structures of Streptomyces pristinaespiralis LCD (SpLCD) in (i) a binary complex with $NAD^+$, (ii) a ternary complex with $NAD^+$ and L-pipecolic acid, (iii) a ternary complex with $NAD^+$ and L-proline, and (iv) a ternary complex with $NAD^+$ and L-2,4-diamino butyric acid. The overall structure of SpLCD was similar to that of ornithine cyclodeaminase from Pseudomonas putida. In addition, SpLCD recognized L-lysine, L-ornithine, and L-2,4-diamino butyric acid despite differences in the active site, including differences in hydrogen bonding by Asp236, which corresponds with Asp228 from Pseudomonas putida ornithine cyclodeaminase. The substrate binding pocket of SpLCD allowed substrates smaller than lysine to bind, thus enabling binding to ornithine and L-2,4-diamino butyric acid. Our structural and biochemical data facilitate a detailed understanding of substrate and product recognition, thus providing evidence for a reaction mechanism for SpLCD. The proposed mechanism is unusual in that $NAD^+$ is initially converted into NADH and then reverted back into $NAD^+$ at a late stage of the reaction.
Native chitin deacetylase of Aspergillus nidulans was purified to apparent homogeneity by a combination of phenyl-Sepharose and Q-Sepharose column chromatography. In order to analyze the amino acid residues involved in the enzyme activity, the enzyme was chemically modified with chemical agent, which selectively reacted with the specific amino acid residue on the protein. When the enzyme was chemically modified with diethylpyrocarbonate, which specifically reacted with histidine residues on the protein, the activity was eliminated. The chitin deacetylase, chemically modified with 100 ${\mu}M$ modifier at the residue of arginine or tyrosine, has shown to have decreased activities. It was shown that the modification at aspartic acid or glutamic acid did not affect the enzyme activity to a greater extent, which would not implicate that acid amino residues were directly involved in catalytic reaction and would affect on the global structures of the proteins. This results demonstrated that histidine and tyrosine residues of enzyme would participate in an important function of the chitin deacetylase activity.
The bacterium Sphingomonas chungbukensis DJ77 produces the extracellular polysaccharide gellan in high yield. Gellan produced by this bacterium is widely used as a gelling agent, and the enzyme UDP-glucose pyrophosphorylase (UGP) is thought to play a key role in the gellan biosynthetic pathway. The UGP gene has been successfully cloned and over-expressed in E. coli. The expressed enzyme was purified with a molecular weight of approximately 32 kDa, as determined by a SDS-polyacrylamide gel, but the enzyme appears as ca. 63 kDa on a native gel, suggesting that the enzyme is present in a homodimer. Kinetic analysis of UDP-glucose for UGP indicates $K_m$ = 1.14 mM and $V_{max}$ = 10.09 mM/min/mg at pH 8.0, which was determined to be the optimal pH for UGP catalytic activity. Amino acid sequence alignment against other bacteria suggests that the UGP contains two conserved domains: An activator binding site and a glucose-1-phosphate binding site. Site-directed mutagenesis of Lys194, located within the glucose-1-phosphate binding site, indicates that substitution of the charge-reversible residue Asp for Lys194 dramatically impairs the UGP activity, supporting the hypothesis that Lys194 plays a critical role in the catalysis.
The secondary and tertiary structures of ${\beta}$-galactosidase from L. lactis ssp. lactis 7962 were designed using Nnpredict and Sybyl version 6.3. By using site-directed mutagenesis, the mutated enzymes, Tyr-475-phe and Glu-506-Asp, were generated based on the structural modeling of L. lactis ssp. lactis 7962. The enzymes Tyr.-475-Phe and Glu-506-Asp had <$1\%$ of the activity of the native enzyme with ONPG as substrate. The $V_{max}$ values of the mutated enzymes were greatly reduced (1,800~40,000-1314) compared with the value for the native ${\beta}$-galactosidase. However, the $K_m$ values of Tyr-475-Phe and Glu-506-Asp with ONPG, PNPG, PNPF, and PNPA were not significantly different from those of the native enzyme. The results obtained support the suggestion that Tyr-475 and Glu-506 constitute very important parts of the catalytic machinery of the ${\beta}$-galactosidase.
Proceedings of the Korean Society of Applied Pharmacology
/
1995.04a
/
pp.75-75
/
1995
Succinic semialdehyde reductase, one of key enzyme of GABA shunt in CNS, is inactivated by o-phthalaldehyde, The inactivation followed pseudo first-order kinetics, and the second-order rate constant for the inactivation process was 28 M$\^$-1/s$\^$-1/ at pH 7.4 and 25$^{\circ}C$. The absorption spectrum(λ$\_$max/=377nm), fluorescence exitation(λ$\_$max/=340nm) and fluorescence emission spectra (λ$\_$max/=409nm) were consistent with the formation of an isoindole derivative in the catalytic site between a cysteine and a lysine residues about 3${\AA}$ apart. The substrate, succinic semialdehyde, did not protect the enzymatic activity against inactivation, whereas the coenzyme, NADPH, protected against o-phthalaldehyde induced inactivation of the enzyme. About 1 isoindole group per moi of the enzyme was formed following complete loss of the enzymatic activity. These results suggest that the amino acid residues of the enzyme participating in reaction with o-phthalaldehyde more likely residues at or near the coenzyme binding site.
The each nitrogen site of ifosfamide metabolite isophosphoramide mustard was synthesized with isotope enriched nitrogen. $Gylcine-^{15}N$ was converted to $2-chloroethylamine-^{15}N$ hydrochloride which was then reacted with phenyl dichlorophosphate to provide $N,N'-bis(2-chloroethyl)phosphordiamidic-^{15}N_2$ acid phenylester(50%, $PhO(O)^{15}N(CH_2CH_2Cl_2)$. Catalytic hydrogenation of this phenyl ester followed by the addition of cyclohexylamine (CHA) provided $IPM-^{15}N$ as the CHA salt(70%).
Yeast alcohol dehydrogenase (YADH) has an acidic residue that interacts with the 2'- and 3'-hydroxyl groups of the adenosine ribose of the $NAD^+$ coenzyme. The acidic residue of Asp-223 (according to horse liver alcohol dehydrogenase amino acid sequence) is supposed to determine the coenzyme specificity for $NAD^+$ rather than $NADP^+$. We mutated Asp-223 to leucine and the mutant YADH was expressed in yeast and characterized for the coenzyme specificity. The turnover numbers of mutant enzyme for $NAD^+$ and ethanol were decreased 3.5- and 4.8-fold compared to wild-type enzyme, respectively. Contrastively, catalytic specificity for $NADP^+$ was increased 13-fold. As a result, the mutant YADH also employed $NADP^+$ as a coenzyme.
Peroxiredoxins (Prxs) are a very large and highly conserved family of peroxidases that reduce peroxides, with a conserved cysteine residue, designated the "peroxidatic" Cys ($C_P$) serving as the site of oxidation by peroxides (Hall et al., 2011; Rhee et al., 2012). Peroxides oxidize the $C_P$-SH to cysteine sulfenic acid ($C_P$-SOH), which then reacts with another cysteine residue, named the "resolving" Cys ($C_R$) to form a disulfide that is subsequently reduced by an appropriate electron donor to complete a catalytic cycle. This overview summarizes the status of studies on Prxs and relates the following 10 minireviews.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.