• 제목/요약/키워드: catalytic acid-site

검색결과 129건 처리시간 0.033초

Structure function relationships amongst the purple acid phosphatase family of binuclear metal-containing enzymes

  • Hamilton, Susan
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2003년도 제2차 연례학술대회 발표논문집
    • /
    • pp.5-5
    • /
    • 2003
  • The purple acid phosphatases comprise a family of binuclear metal-containing enzymes. The metal centre contains one ferric ion and one divalent metal ion. Spectroscopic studies of the monomeric, ${\sim}$36 kDa mammalian purple acid phosphatases reveal the presence of an Fe(III)Fe(II) centre in which the metals are weakly antiferromagnetically coupled, whereas the dimeric, ${\sim}$110 000 kDa plant enzymes contain either Fe(III)Zn(II) or Fe(III)Mn(II). The three dimensional structures of the red kidney bean and pig enzymes show very similar arrangements of the metal ligands but some significant differences beyond the immediate vicinity of the metals. In addition to the catalytic domain, the plant enzyme contains a second domain of unknown function. A search of sequence databases was undertaken using a sequence pattern which includes the conserved metal-binding residues in the plant and animal enzymes. The search revealed the presence in plants of a 'mammalian-type' low molecular weight purple acid phosphatase, a high molecular weight form in some fungi, and a homologue in some bacteria. The catalytic mechanism of the enzyme has been investigated with a view to understanding the marked difference in specificity between the Fe-Mn sweet potato enzyme, which exhibits highly efficient catalysis towards both activated and unactivated phosphate esters, and other PAPs, which hydrolyse only activated esters. Comparison of the active site structures of the enzymes reveal some interesting differences between them which may account for the difference. The implications fur understanding the physiological functions of the enzymes will be discussed.

  • PDF

폐롭스카이트형 촉매에서 입자상물질의 촉매연소반응 (Catalytic Combustion of Soot Particulate over Perovskite-Type Oxides)

  • 양진섭;홍성수;정덕영;오광중;조경목;류봉기;박대원
    • 공업화학
    • /
    • 제9권6호
    • /
    • pp.803-810
    • /
    • 1998
  • 능금산법으로 제조된 페롭스카이트 촉매에서 입자상물질의 연소반응에 대하여 연구하였다. 페롭스카이트 산화물의 A 및 B site에 금속이온을 치환시켜 연소반응의 활성을 증가시켰다. 또한 반응온도, 산소의 농도, 공간속도, $SO_2$ 및 물의 영향에 대하여 조사하였다. $LaCoO_3$형 촉매의 A site에 알칼리족 금속을 치환시키면 연소개시 온도가 낮아졌고, 알카리족 금속은 Cs>K>Na의 순서로 연소활성을 증가시켰다. 그러나 $La_{0.6}Cs_{0.4}CoO_3 $촉매에서 B site에 Fe나 Mn을 치환시키더라도 연소개시 온도의 변화가 거의 없었다. 산소의 농도가 증가함에 따라 연소개시 온도는 낮아졌고 이산화탄소의 생성속도는 산소분압의 영향을 별로 받지 않았다. 한편 공간속도의 증가에 따라 연소개시온도가 낮아졌고, 이산화황에 대한 촉매의 비활성화는 일어나지 않았으며, 반응물 중에 첨가된 물에 의해 연소반응이 촉진되었다.

  • PDF

Mitogen-activated $p70^{s6k}$ signalling pathway

  • Han, Jeung-Whan
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 제4회 추계심포지움
    • /
    • pp.135-139
    • /
    • 1996
  • $p70^{s6k}$ lies on a $p21^{ras}$-independent signalling pathway and plays an important role in mitogenesis. Activation is associated with phosphorylation at multiple sites, four of which lie in an autoinhibitory region. The immunosuppressant rapamycin induces $p70^{s6k}$ inactivation through dephosphorylation of a second set of mitogen-induced sites. Here we identify these sites as $T_{229}$, $T_{389}$, and $S_{404}$. $T_{229}$ resides in the "T loop" of the catalytic domain, an essential phosphorylation site in other kinases. However, $p70^{s6k}$ inactivation by rapamycin most closely parallels $T_{389}$ dephosphorylation. Mutation of $T_{389}$ to alanine ablates kinase activity, whereas mutation to glutamic acid confers constitutive kinase activity and rapamycin resistance. indicating an essential role for phosphorylation at this site. $T_{389}$ resides in an unusual hydrophobic motif, not previously noted, between the catalytic and autoinhibitory domains. The importance of this site, and surrounding motif, is emphasized by its conservation in other kinases including homologues of $p70^{s6k}$ derived from such distantly related organisms as yeast and plant.

  • PDF

Structural analysis of sialyltransferase PM0188 from Pasteurella multocida complexed with donor analogue and acceptor sugar

  • Kim, Dong-Uk;Yoo, Ji-Ho;Lee, Yong-Joo;Kim, Kwan-Soo;Cho, Hyun-Soo
    • BMB Reports
    • /
    • 제41권1호
    • /
    • pp.48-54
    • /
    • 2008
  • PM0188 is a newly identified sialyltransferase from P. multocida which transfers sialic acid from cytidine 5'-monophosphonuraminic acid (CMP-NeuAc) to an acceptor sugar. Although sialyltransferases are involved in important biological functions like cell-cell recognition, cell differentiation and receptor-ligand interactions, little is known about their catalytic mechanism. Here, we report the X-ray crystal structures of PM0188 in the presence of an acceptor sugar and a donor sugar analogue, revealing the precise mechanism of sialic acid transfer. Site-directed mutagenesis, kinetic assays, and structural analysis show that Asp141, His311, Glu338, Ser355 and Ser356 are important catalytic residues; Asp141 is especially crucial as it acts as a general base. These complex structures provide insights into the mechanism of sialyltransferases and the structure-based design of specific inhibitors.

페롭스카이트형 산화물에서 일산화탄소에 의한 질소산화물의 환원반응 (Catalytic Reduction of Nitric Oxide by Carbon Monoxide over Perovskite-Type Oxide)

  • 문행철;선창봉;이근대;안병현;임권택;홍성수
    • 공업화학
    • /
    • 제10권3호
    • /
    • pp.407-414
    • /
    • 1999
  • 능금산법으로 제조된 페롭스카이트형 산화물에서 CO에 의한 NO의 환원반응에 대한 연구를 행하였다. 촉매는 주로 Lanthanoid계 페롭스카이트를 사용하였고, 활성을 증가시키기 위해 A, B site에 Sr, Ba 및 Fe, Mn 등을 치환시켰다. $LaCoO_3$ 촉매에서 A site에 Sr을 일부 치환시키면 NO전환율이 증가하였다. 한편 B site에 Fe나 Mn을 일부 치환시키면 NO의 전환율이 증가하였으나 Fe의 치환량이 커지면 오히려 전환율이 감소하였다. 한편 $La_{0.6}Sr_{0.4}Co_{0.8}Fe_{0.2}O_3 $ 촉매에 $SnO_2$$MnO_2$를 혼합하면 촉매활성이 증가하는 상승효과를 보였다. 반응물에 첨가된 물은 촉매활성을 감소시켰으나 촉매에 대한 물의 작용은 어느 정도 가역적이었다. 또한 반응물에 첨가된 이산화황은 NO의 전환율을 감소시켰다.

  • PDF

Asparagine-473 Residue Is Important to the Efficient Function of Human Dihydrolipoamide Dehydrogenase

  • Kim, Hak-Jung
    • BMB Reports
    • /
    • 제38권2호
    • /
    • pp.248-252
    • /
    • 2005
  • Dihydrolipoamide dehydrogenase (E3) catalyzes the reoxidation of dihydrolipoyl moiety of the acyltransferase components of three $\alpha$-keto acid dehydrogenase complexes and of the hydrogen-carrier protein of the glycine cleavage system. His-457 of Pseudomonas putida E3 is suggested to interact with the hydroxyl group of Tyr-18 of the other subunit and with Glu-446, a component in the last helical structure. To examine the importance of the suggested interactions in human E3 function, the corresponding residue of human E3, Asn-473, was substituted to Leu using site-directed mutagenesis. The E3 mutant was expressed in Escherichia coli and highly purified using an affinity column. Its E3 activity was decreased about 37-fold, indicating that Asn-473 residue was important to the efficient catalytic function of human E3. Its slightly altered spectroscopic properties implied that small conformational changes could occur in the E3 mutant.

Chemical Modification of Cysteine Residues in Hafnia alvei Aspartase by NEM and DTNB

  • Shim, Joon-Bum;Kim, Jung-Sung;Yoon, Moon-Young
    • BMB Reports
    • /
    • 제30권2호
    • /
    • pp.113-118
    • /
    • 1997
  • Aspartase from Hafnia alvei was inactivated by N-ethylmaleimide (NEM) and 5,5' -Dithiobis-(2-znitrobenzoic acid) (DTNB) following pseudo-first order kinetics. Their apparent reaction orders were 0.83 and 0.50 for NEM and DTNB modifications, respectively, indicating that inactivation was due to a sulfhydryl group in the active site of aspartase and participation of the sulfhydryl group in an essential step in the catalytic reaction. When aspartase was modified by DTNB, the enzyme activity was restored by dithiothreitol treatment, indicating that cysteine residuetsl islarel possibly at or near the active site. The pH-dependence of the inactivation rate by NEM suggested that an amino acid residue having pK value of 8.3 was involved in the inactivation. When aspartase was incubated with NEM and L-aspartate together, L-aspartate markedly protected the enzyme from inactivation by NEM, but the other reagents used did not.

  • PDF

Activity of Human Dihydrolipoamide Dehydrogenase Is Largely Reduced by Mutation at Isoleucine-51 to Alanine

  • Kim, Hak-Jung
    • BMB Reports
    • /
    • 제39권2호
    • /
    • pp.223-227
    • /
    • 2006
  • Dihydrolipoamide dehydrogenase (E3) belongs to the pyridine nucleotide-disulfide oxidoreductase family including glutathione reductase and thioredoxin reductase. It catalyzes the reoxidation of dihydrolipoyl moiety of the acyltransferase components of three $\alpha$-keto acid dehydrogenase complexes and of the hydrogen-carrier protein of the glycine cleavage system. Isoleucine-51 of human E3, located near the active disulfide center Cys residues, is highly conserved in most E3s from several sources. To examine the importance of this highly conserved Ile-51 in human E3 function, it was substituted with Ala using site-directed mutagenesis. The mutant was expressed in Escherichia coli and highly purified using an affinity column. Its E3 activity was decreased about 100-fold, indicating that the conservation of the Ile-51 residue in human E3 was very important to the efficient catalytic function of the enzyme. Its altered spectroscopic properties implied that conformational changes could occur in the mutant.

Identification of Catalytic Amino Acid Residues by Chemical Modification in Dextranase

  • Ko, Jin-A;Nam, Seung-Hee;Kim, Doman;Lee, Jun-Ho;Kim, Young-Min
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권5호
    • /
    • pp.837-845
    • /
    • 2016
  • A novel endodextranase isolated from Paenibacillus sp. was found to produce isomaltotetraose and small amounts of cycloisomaltooligosaccharides with a degree of polymerization of 7-14 from dextran. To determine the active site, the enzyme was modified with 1-ethyl-3-[3-(dimethylamino)-propyl]-carbodiimide (EDC) and α-epoxyalkyl α-glucosides (EAGs), an affinity labeling reagent. The inactivation followed pseudo first-order kinetics. Kinetic analysis and chemical modification using EDC and EAGs indicated that carboxyl groups are essential for the enzymatic activity. Three Asp and one Glu residues were identified as candidate catalytic amino acids, since these residues are completely conserved across the GH family of 66 enzymes. Replacement of Asp189, Asp340, or Glu412 completely abolished the enzyme activity, indicating that these residues are essential for catalytic activity.

마이코박테리아의 adenylyl cyclase (Adenylyl Cyclases in Mycobacteria)

  • 전한승;고인정;오정일
    • 생명과학회지
    • /
    • 제21권3호
    • /
    • pp.473-479
    • /
    • 2011
  • Adenylyl cyclase (AC)는 ATP로부터 cAMP를 형성하는 반응을 촉매한다. AC에 의해 생산된 cAMP는 다양한 신호전달 경로에서 이차전달자로 사용되고 많은 종에서 다양한 세포기능을 조절한다. AC는 1차구조에 따라 6개의 그룹으로 나눌 수 있다. 진핵생물과 Mycobacterium 속에 속하는 세균에서는 class III에 속하는 AC만이 발견된다. Class III에 속하는 AC의 경우 catalytic cyclase 도메인이 dimer를 형성해야만 활성부위가 형성되고 활성을 가지게 된다. 포유류의 AC는 하나의 polypeptide에 2개의 catalytic cyclase 도메인을 가지고 있고, 이 두 개의 도메인이 intramolecular dimerization을 통해서 활성부위를 형성한다. 반면에 mycobacteria의 AC는 polypeptide에 한 개의 catalytic cyclase 도메인을 가지고 있고, homodimer의 4차구조를 형성하여 활성을 가지게 된다. Class III AC의 활성을 위해서 필요한 6개의 아미노산 잔기가 활성부위에 잘 보존되어 있다. 이 6개의 아미노산 잔기는 $Mg^{2+}$과 결합을 하는 2개의 aspartate 잔기쌍, 기질특이성을 부여하는 lysine-aspartate 잔기쌍, 그리고 반응 전이상태를 안정화시키는 arginine-asparagine 잔기쌍들로 이루어져 있다. Mycobacterium tuberculosis H37Rv에서는 16개의 AC 유전자가 발견되었으며, 이 AC의 연구된 특성에 대해 본 총설에서 다룰 것이다.