DOI QR코드

DOI QR Code

Asparagine-473 Residue Is Important to the Efficient Function of Human Dihydrolipoamide Dehydrogenase

  • Kim, Hak-Jung (Department of Chemistry, College of Natural Science, Daegu University)
  • Published : 2005.03.31

Abstract

Dihydrolipoamide dehydrogenase (E3) catalyzes the reoxidation of dihydrolipoyl moiety of the acyltransferase components of three $\alpha$-keto acid dehydrogenase complexes and of the hydrogen-carrier protein of the glycine cleavage system. His-457 of Pseudomonas putida E3 is suggested to interact with the hydroxyl group of Tyr-18 of the other subunit and with Glu-446, a component in the last helical structure. To examine the importance of the suggested interactions in human E3 function, the corresponding residue of human E3, Asn-473, was substituted to Leu using site-directed mutagenesis. The E3 mutant was expressed in Escherichia coli and highly purified using an affinity column. Its E3 activity was decreased about 37-fold, indicating that Asn-473 residue was important to the efficient catalytic function of human E3. Its slightly altered spectroscopic properties implied that small conformational changes could occur in the E3 mutant.

Keywords

References

  1. Jentoft, J. E., Shoham, M., Hurst, D. and Patel, M. S. (1992) A structural model for human dihydrolipoamide dehydrogenase. Proteins 14, 88-101 https://doi.org/10.1002/prot.340140110
  2. Khumthong, R., Angsuthanasombat, C., Panyim, S. and Katzenmeier, G. (2002) In vitro determination of Dengue virus type 2 NS2B-NS3 protease activity with fluorescent peptide substrates. J. Biochem. Mol. Biol. 35, 206-212 https://doi.org/10.5483/BMBRep.2002.35.2.206
  3. Kim, H (1999a) Protein engineering of an artificial intersubunit disulfide bond linkage in human dihydrolipoamide dehydrogenase. J. Biochem. Mol. Biol. 32, 76-81
  4. Kim, H (1999b) Deletion of the last five amino acid residues in human dihydrolipoamide dehydrogenase. Bull. Korean Chem. Soc. 20, 1221-1224
  5. Kim, H (2002) Activity of human dihydrolipoamide dehydrogenase is reduced by mutation at threonine-44 of FAD-binding region to Valine. J. Biochem. Mol. Biol. 35, 437-441 https://doi.org/10.5483/BMBRep.2002.35.4.437
  6. Kim, Y-S., Ha, K-S., Kim, Y.-H. and Bae, Y.-S. (2002) The ring- H2 finger motif of CKBBP1/SAG is necessary for interaction with protein kinase CKII and optimal cell proliferation. J. Biochem. Mol. Biol. 35, 629-636 https://doi.org/10.5483/BMBRep.2002.35.6.629
  7. Kim, H., Liu, T.-C. and Patel, M. S. (1991) Expression of cDNA sequences encoding mature and precursor forms of human dihydrolipoamide dehydrogenase in Escherichia coli. J. Biol. Chem. 266, 9367-9373
  8. Kim, H. and Patel, M. S. (1992) Characterization of two sitespecifically mutated human dihydrolipoamide dehydrogenases (His-452 $\rightarrow$ Gln and Glu-457 $\rightarrow$ Gln). J. Biol. Chem. 267, 5128-5132
  9. Liu, T., Korotchkina, L. G., Hyatt, S. L., Vettakkorumakankav, N. N. and Patel, M. S. (1995) Spectroscopic studies of the characterization of recombinant human dihydrolipoamide dehydrogenase and its site-directed mutants. J. Biol. Chem. 270, 15545-15550 https://doi.org/10.1074/jbc.270.26.15545
  10. Mattevi, A., Obmolova, G., Sokatch, J. R., Betzel, C. and Hol, W. G. J. (1992) The refined crystal structure of Pseudomonas putide lipoamide dehydrogenase complexed with $NAD^{+}$ at 2.45 A resolution. Proteins 13, 336-351 https://doi.org/10.1002/prot.340130406
  11. Park, S-J and Cho, Y-D. (2002) Structural roles of cysteine 50 and cysteine 230 residues in Arabidopsis thaliana S-adenosylmethionine decarboxylase. J. Biochem. Mol. Biol. 35, 178-185 https://doi.org/10.5483/BMBRep.2002.35.2.178
  12. Pons, G., Raefsky-Estrin, C., Catothers, D. J., Pepin, R. A., Javed, A. A., Jesse, B. W., Ganapathi, M. K., Samols, D. and Patel, M. S. (1988) Cloning and cDNA sequence of the dihydrolipoamide dehydrogenase component of human aketoacid dehydrogenase complexes. Proc. Natl. Acad. Sci. USA 85, 1422-1426 https://doi.org/10.1073/pnas.85.5.1422
  13. Reed, L. J. (1974) Multienzyme complexes. Acc. Chem. Res. 7, 40-46 https://doi.org/10.1021/ar50074a002
  14. Schierbeek, A. J., Swarte, M. B. A., Dijkstra, B. W., Vriend, G., Reed, R. J., Hol, W. G. J. and Drenth, J. (1989) X-ray structure of lipoamide dehydrogenase from Azotobacter vinelandii determined by a combination of molecular and isomorphous replacement techniques. J. Mol. Biol. 206, 365- 379 https://doi.org/10.1016/0022-2836(89)90486-5
  15. Thieme, R., Pai, E. F., Schirmer, R. H. and Schulz, G. E. (1981) Three-dimensional structure of glutathione reductase at 2 A resolution. J. Mol. Biol. 152, 763-782 https://doi.org/10.1016/0022-2836(81)90126-1
  16. Walker, J. L. and Oliver, D. J. (1986) Glycine decarboxylase multienzyme complex. Purification and partial characterization from leaf mitochondria. J. Biol. Chem. 261, 2214-2221
  17. Williams, C. H., Jr. (1976) Flavin containing dehydrogenases; in Enzymes, Boyer, P. (ed.), pp. 89-173, Academic Press, New York, USA

Cited by

  1. Insight to the Interaction of the Dihydrolipoamide Acetyltransferase (E2) Core with the Peripheral Components in theEscherichia coliPyruvate Dehydrogenase Complex via Multifaceted Structural Approaches vol.288, pp.21, 2013, https://doi.org/10.1074/jbc.M113.466789
  2. The role of amino acids T148 and R281 in human dihydrolipoamide dehydrogenase vol.15, pp.1, 2007, https://doi.org/10.1007/s11373-007-9208-9