• Title/Summary/Keyword: $\alpha$-keto acid dehydrogenase complex

Search Result 10, Processing Time 0.023 seconds

Determination of Branched-Chain α-Keto Acid Dehydrogenase Activity in Rat Tissues

  • Kim, Hyun-Sook;Johnson, Wayne A.
    • BMB Reports
    • /
    • v.28 no.1
    • /
    • pp.12-16
    • /
    • 1995
  • The branched-chain ${\alpha}$-keto acid dehydrogenase (BCKAD) complex is a rate limiting enzyme which catalyzes the oxidative decarboxylation of branched-chain ${\alpha}$-keto acids. Numerous studies have suggested that BCKAD is subject to covalent modification in vitro via phosphorylation and dephosphorylation, which are catalyzed by a specific kinase and phosphatase, respectively. The biggest difficulty in the assay of BCKAD activity is to arrest the interconversion between the active and inactive forms. BCKAD activity was determined from fresh rat heart and liver tissues using homogenizing and assay buffers containing inhibitors of phosphatase and kinase. The results suggest that a radiochemical assay using ${\alpha}$-keto[1-$^{14}C$]-isovalerate as a substrate for the enzyme can be applied as a reliable method to determine in vitro enzyme activity with arrested interconversion between the active and inactive forms of the BCKAD complex.

  • PDF

Modulation of Branched-Chain Amino Acid Metaolism by Exercise in Rats

  • Kim, Hyun-Sook
    • Journal of Nutrition and Health
    • /
    • v.27 no.9
    • /
    • pp.892-900
    • /
    • 1994
  • A variety of important roles for branched-chain amino acids in metabolic regulation has been suggested. Branched-chain $\alpha$-keto acid dehydrogenase(BCKAD) complex is a rate limiting enzyme in branched-chain amino acid metabolism. The purpose of this study was to examine the effects of exercise on the activity and activity state of branched-chain $\alpha$-keto acid dehydrogenase in rat hert and liver thssues. Forty-eight Sprague-Dawley rats were assigned into three experimental groups : sedentary control, exercised, or exercised-rested. Submaximal exercise(running) for two hours significantly increased basal activity without a change in total activity in both tissues, with a concomitiant increase in activity state of the enzyme complex. At 10 min post-exercise, heart enzyme activity significantly decreased, though not to the control level, while liver enzyme activity remained unchanged. These data suggested that the exercise-induced increase in branched-chain $\alpha$-keto acid decarboxylation in rat tissues may not be the result of enzyme synthesis, but rather is due to increased activity of the BCKAD.

  • PDF

Asparagine-473 Residue Is Important to the Efficient Function of Human Dihydrolipoamide Dehydrogenase

  • Kim, Hak-Jung
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.248-252
    • /
    • 2005
  • Dihydrolipoamide dehydrogenase (E3) catalyzes the reoxidation of dihydrolipoyl moiety of the acyltransferase components of three $\alpha$-keto acid dehydrogenase complexes and of the hydrogen-carrier protein of the glycine cleavage system. His-457 of Pseudomonas putida E3 is suggested to interact with the hydroxyl group of Tyr-18 of the other subunit and with Glu-446, a component in the last helical structure. To examine the importance of the suggested interactions in human E3 function, the corresponding residue of human E3, Asn-473, was substituted to Leu using site-directed mutagenesis. The E3 mutant was expressed in Escherichia coli and highly purified using an affinity column. Its E3 activity was decreased about 37-fold, indicating that Asn-473 residue was important to the efficient catalytic function of human E3. Its slightly altered spectroscopic properties implied that small conformational changes could occur in the E3 mutant.

Activity of Human Dihydrolipoamide Dehydrogenase Is Largely Reduced by Mutation at Isoleucine-51 to Alanine

  • Kim, Hak-Jung
    • BMB Reports
    • /
    • v.39 no.2
    • /
    • pp.223-227
    • /
    • 2006
  • Dihydrolipoamide dehydrogenase (E3) belongs to the pyridine nucleotide-disulfide oxidoreductase family including glutathione reductase and thioredoxin reductase. It catalyzes the reoxidation of dihydrolipoyl moiety of the acyltransferase components of three $\alpha$-keto acid dehydrogenase complexes and of the hydrogen-carrier protein of the glycine cleavage system. Isoleucine-51 of human E3, located near the active disulfide center Cys residues, is highly conserved in most E3s from several sources. To examine the importance of this highly conserved Ile-51 in human E3 function, it was substituted with Ala using site-directed mutagenesis. The mutant was expressed in Escherichia coli and highly purified using an affinity column. Its E3 activity was decreased about 100-fold, indicating that the conservation of the Ile-51 residue in human E3 was very important to the efficient catalytic function of the enzyme. Its altered spectroscopic properties implied that conformational changes could occur in the mutant.

Maple Syrup Urine Disease : Longterm Diet Therapy and Treatment of Acute Metabolic Decompensation (단풍당뇨증의 식이요법과 급성대상부전의 치료)

  • Lee, Hong-Jin;Bae, Eun-Joo;Park, Won-Il;Lee, Kyung-Ja
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.3 no.1
    • /
    • pp.4-14
    • /
    • 2003
  • Maple syrup urine disease or branched chain ketoacidurias caused by a deficiency in activity of the branched-chain ${\alpha}$-keto acid dehydrogenase(BCKD) complex. This metabolic block results in the accumulation of the branched-chain amino acids(BCAAs) leucine, isoleucine and valine, and the corresponding branched chain ${\alpha}$-keto acids (BCKAs). Based on the clinical presentation and biochemical responses to thiamine administration, MSUD patients can be divided into five phenotypes : classic, intermediate, intermittent, thiamine responsive and dihydrolipoyl dehydrogenase(E3)-deficient. Classic MSUD has a neonatal onset of encephalopathy, and is the most severe ad most common form. Variant forms of MSUD generally have the initial symptoms by 2 years of age. The majority of untreated classic patients die within the early months of life from recurrent metabolic crisis and neurologic deterioration. Treatment involves both longterm dietary management and aggressive intervention during acute metabolic decompensation. We report here our experience of longterm diet therapy and treatment of acute metabolic decompensation of a case of classic MSUD.

  • PDF

Comparative metabolomic analysis in horses and functional analysis of branched chain (alpha) keto acid dehydrogenase complex in equine myoblasts under exercise stress

  • Jeong-Woong, Park;Kyoung Hwan, Kim;Sujung, Kim;Jae-rung, So;Byung-Wook, Cho;Ki-Duk, Song
    • Journal of Animal Science and Technology
    • /
    • v.64 no.4
    • /
    • pp.800-811
    • /
    • 2022
  • The integration of metabolomics and transcriptomics may elucidate the correlation between the genotypic and phenotypic patterns in organisms. In equine physiology, various metabolite levels vary during exercise, which may be correlated with a modified gene expression pattern of related genes. Integrated metabolomic and transcriptomic studies in horses have not been conducted to date. The objective of this study was to detect the effect of moderate exercise on the metabolomic and transcriptomic levels in horses. In this study, using nuclear magnetic resonance (NMR) spectroscopy, we analyzed the concentrations of metabolites in muscle and plasma; we also determined the gene expression patterns of branched chain (alpha) keto acid dehydrogenase kinase complex (BCKDK), which encodes the key regulatory enzymes in branched-chain amino acid (BCAA) catabolism, in two breeds of horses, Thoroughbred and Jeju, at different time intervals. The concentrations of metabolites in muscle and plasma were measured by 1H NMR (nuclear magnetic resonance) spectroscopy, and the relative metabolite levels before and after exercise in the two samples were compared. Subsequently, multivariate data analysis based on the metabolic profiles was performed using orthogonal partial least square discriminant analysis (OPLS-DA), and variable important plots and t-test were used for basic statistical analysis. The stress-induced expression patterns of BCKDK genes in horse muscle-derived cells were examined using quantitative reverse transcription polymerase chain reaction (qPCR) to gain insight into the role of transcript in response to exercise stress. In this study, we found higher concentrations of aspartate, leucine, isoleucine, and lysine in the skeletal muscle of Jeju horses than in Thoroughbred horses. In plasma, compared with Jeju horses, Thoroughbred horses had higher levels of alanine and methionine before exercise; whereas post-exercise, lysine levels were increased. Gene expression analysis revealed a decreased expression level of BCKDK in the post-exercise period in Thoroughbred horses.

Protein Engineering of an Artificial Intersubunit Disulfide Bond Linkage in Human Dihydrolipoamide Dehydrogenase

  • Kim, Hak-Jung
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.76-81
    • /
    • 1999
  • Dihydrolipoamide dehydrogenase (E3) belongs to the protein family of pyridine nucleotide-disulfide oxidoreductases, including glutathione reductase (GR). The two subunits of human GR are covalently linked by an intersubunit disulfide bond between the pair of the Cys-90 residues. The corresponding residue (Ser-79) in human E3 was substituted to Cys using site-directed mutagenesis. The mutant was expressed in Escherichia coli and highly purified using an affinity column. About 40% of the mutants formed a spontaneous intersubunit disulfide bond linkage. This result implies that Ser-79 and possibly surrounding residues constitute one of the several intersubunit contact regions in human E3. It provides another good piece of evidence for the predicted high degree of the structural homology between human E3 and GR. Spectroscopic studies indicate conformational changes in the mutant.

  • PDF

Gene Cloning and Nucleotide Sequence of Human Dihydrolipoamide Dehydrogenase-Binding Protein

  • Lee, Jeongmin;Ryou, Chongsuk;Jeon, Bong Kyun;Lee, Poongyeon;Woo, Hee-Jong;Kwon, Moosik
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.3
    • /
    • pp.421-426
    • /
    • 2002
  • The pyruvate dehydrogenase complex (PDC), a member of $\alpha$-keto acid dehydrogenase complex, catalyzes the oxidative decarboxylation of pyruvate with the formation of $CO_2$, acetyl-CoA, NADH, and $H^+$. This complex contains multiple copies of three catalytic components including pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2), and dihydrolipoamide dehydrogenase (E3). Two regulatory components (E1-kinase and phospho-E1 phosphatase) and functionally less-understood protein (protein X, E3BP) are also involved in the formation of the complex. In this study, we have partially cloned the gene for E3BP in human. Nine putative clones were isolated by human genomic library screening with 1.35 kb fragment of E3BP cDNA as a probe. For investigation of cloned genes, Southern blot analysis and the construction of the restriction map were performed. One of the isolated clones, E3BP741, has a 3 kb-SacI fragment, which contains 200 bp region matched with E3BP cDNA sequences. The matched DNA sequence encodes the carboxyl-terminal portion of lipoyl-bearing domain and hinge region of human E3BP. Differences between yeast E3BP and mammalian E3BP coupled with the remarkable similarity between mammalian E2 and mammalian E3BP were confirmed from the comparison of the nucleotide sequence and the deduced amino acid sequence in the cloned E3BP. Cloning of human E3BP gene and analysis of the gene structure will facilitate the understanding of the role(s) of E3BP in mammalian PDC.

Identification of Two Novel BCKDHB Mutations in Korean Siblings with Maple Syrup Urine Disease Showing Mild Clinical Presentation

  • Ko, Jung Min;Shin, Choong Ho;Yang, Sei Won;Cheong, Hae Il;Song, Junghan
    • Journal of Genetic Medicine
    • /
    • v.11 no.1
    • /
    • pp.22-26
    • /
    • 2014
  • Maple syrup urine disease (MSUD) is a disorder that involves the metabolism of branched chain amino acids, arising from a defect in branched-chain ${\alpha}$-keto acid dehydrogenase complex. Mutations have been identified in the BCKDHA, BCKDHB, or DBT genes, which encode different subunits of the BCKDH complex. Although encephalopathy and progressive neurodegeneration are its major manifestations, the severity of the disease may range from the severe classic type to milder intermediate variants. We report two Korean siblings with the milder intermediate MSUD who were diagnosed with MSUD by a combination of newborn screening tests using tandem mass spectrometry and family genetic screening for MSUD. At diagnosis, the patients' plasma levels were elevated for leucine, isoleucine, valine, and alloisoleucine, and branched-chain ${\alpha}$-keto acids and branched-chain ${\alpha}$-hydroxy acids were detected in their urine. BCKDHA, BCKDHB, and DBT analysis was performed, and two novel mutations were identified in BCKDHB. Our patients were thought to have the milder intermediate variant of MSUD, rather than the classic form. Although MSUD is a typical metabolic disease with poor prognosis, better outcomes can be expected if early diagnosis and prompt management are provided, particularly for milder forms of the disease.