• Title/Summary/Keyword: cat genes

Search Result 87, Processing Time 0.023 seconds

Characterization of Plasmid pKJ36 from Bifidobacterium longum and Construction of an E. coli-Bifidobacterium Shuttle Vector

  • Park, Nyeong-Soo;Shin, Dong-Woo;Lee, Ke-Ho;Ji, Geun-Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.312-320
    • /
    • 2000
  • Abstract The full sequence of the plasmid pKJ36, which was derived from Bifidobacterium longum KJ, was determined and analyzed to construct shuttle vectors between E. coli and Bifidobacterium. The plasmid pKJ36 was composed of 3,625 base pairs with a 65.1% G+C content. The structural organization of pKJ36 was highly similar to that of pKJ50, and the three major ORFs on pKJ36 showed high amino acid sequence homologies with those of pKJ50. The putative proteins coded by these three ORFs were designated as RepB (32.0 kDa, pI=9.25), MembB (29.0 kDa, pI=12.25), and MobB (39.0 kDa, pI=IO.66), respectively. The amino acid sequence of RepB showed a 57% identity and 70% similarity with that of the RepA protein of pKJ50. Upstream of the repB gene, the so-called iteron sequence was directly repeated four-and-ahalf times and a conserved dnaA box was identified. An amino acid sequence comparison between the MobB and MobA of pKJ50 revealed a 48% identity and 61 % similarity. A conserved oriT sequence with an inverted repeat identical to that of pKJ50 was also found upstream of the mobB gene. A hydropathy analysis of MembB revealed four possible transmembrane regions. The expressions of the repB and membB genes were confirmed by RT-PCR. The in vitro translation reaction of pKJ36 showed protein bands with anticipated sizes with respect to each putative gene product. S 1 endonuclease treatment and Southern hybridization suggested that pKJ36 replicates by a rolling circle mechanism via a single-stranded DNA (ssDNA) intermediate. A shuttle vector between E. coli and Bifidobacterium sp. was constructed using the pKJ36, pBR322, and staphylococcal chloramphenicol acetyl transferase (CAT) gene. The successful transformation of the Bifidobacterium strains was shown by Southern hybridization and PCR. The transformation efficiency differed from strain to strain and, depending on the electroporation conditions, with a range between $1.2{\times}10^1-2.6{\times}10^2{\;}cfu/\mu\textrm{g}$ DNA.X> DNA.

  • PDF

Induction of apoptosis by etoposide treatment in colon cancer cell line SNU C2A (대장암 세포주 SNU C2A에서 etoposide 처리에 의한 apoptosis 유도)

  • Jung, Ji-Yeon;Na, Yun-sook;Jung, Ho-Chul;Oh, Sang-Jin
    • IMMUNE NETWORK
    • /
    • v.1 no.3
    • /
    • pp.221-229
    • /
    • 2001
  • Background: Inactivation of tumor suppressor genes is believed to be important in the development of many human malignancies. Recently, several lines of evidence have indicated that the wild type p53 gene located at 17p13.3, may function as a tumor suppressor gene and that a mutant p53 gene could promote transformation by inactivating normal p53 function in a dominant negative fashion. These broad spectrum of p53 mutation in human cancers provide that mutant p53 and their protein may be potential targets of tumor diagnostic and therapeutic interventions. Method: Colony formation was performed to investigate growth suppressional ability. p53 expression pattern was examined by western blot and p53-mediated transactivation ability was assessed by CAT activity. SNU C2A cells were observed in apoptotic aspects induced by etoposide and $H_2O_2$ treatment, detecting sensitivity on agent, DNA fragmentation through agarose gel, chromatin condensation by fluorescence microscope, and cell cycle distribution by FACS. Result: 1) p53 mutant his179arg ($histidine{\rightarrow}arginine$) detected in SNU C2A cells lost transcriptional activity and growth suppression ability, showing dominant negative effect on its wild type p53. 2) Etoposide-treated SNU C2A cells induced apoptosis, exhibiting dramatic reduction of cell growth, DNA fragmentation, nuclear condensation formation of apoptotic body and increment of sub-G1 cell fraction. 3) Etoposide and $H_2O_2$-treated SNU C2A cells have no high increase of p53 expression and overexpressed p53 protein changed localization, from cytoplasm to nucleus. Also, p53-mediated transcriptional activity was increased by agents-treatment. Conclusion: SNU C2A cells coexpress wild-type and mutant p53 protein induced apoptosis in the condition on DNA damage, through localizational shift from cytoplasm to nucleus of p53 protein rather than the induction of p53 protein. SNU C2A cells derived mutant p53 his179arg abrogated both the growth supression ability and transactivational activity, showing inhibition effect on transcriptional activity of wild type p53, but did not repress the activity of wild type p53 in SNU C2A cells owing to dominant activity of wild type. These cell condition may provide new gene therapeutic implications leading effective antiproliferation of cell when mutant and wild-type p53 protein were co-expressed in cell.

  • PDF

Identification of a Second Type of AHL-Lactonase from Rhodococcus sp. BH4, belonging to the α/β Hydrolase Superfamily

  • Ryu, Du-Hwan;Lee, Sang-Won;Mikolaityte, Viktorija;Kim, Yea-Won;Jeong, Haeyoung;Lee, Sang Jun;Lee, Chung-Hak;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.937-945
    • /
    • 2020
  • N-acyl-homoserine lactone (AHL)-mediated quorum sensing (QS) plays a major role in development of biofilms, which contribute to rise in infections and biofouling in water-related industries. Interference in QS, called quorum quenching (QQ), has recieved a lot of attention in recent years. Rhodococcus spp. are known to have prominent quorum quenching activity and in previous reports it was suggested that this genus possesses multiple QQ enzymes, but only one gene, qsdA, which encodes an AHL-lactonase belonging to phosphotriesterase family, has been identified. Therefore, we conducted a whole genome sequencing and analysis of Rhodococcus sp. BH4 isolated from a wastewater treatment plant. The sequencing revealed another gene encoding a QQ enzyme (named jydB) that exhibited a high AHL degrading activity. This QQ enzyme had a 46% amino acid sequence similarity with the AHL-lactonase (AidH) of Ochrobactrum sp. T63. HPLC analysis and AHL restoration experiments by acidification revealed that the jydB gene encodes an AHL-lactonase which shares the known characteristics of the α/β hydrolase family. Purified recombinant JydB demonstrated a high hydrolytic activity against various AHLs. Kinetic analysis of JydB revealed a high catalytic efficiency (kcat/KM) against C4-HSL and 3-oxo-C6 HSL, ranging from 1.88 x 106 to 1.45 x 106 M-1 s-1, with distinctly low KM values (0.16-0.24 mM). This study affirms that the AHL degrading activity and biofilm inhibition ability of Rhodococcus sp. BH4 may be due to the presence of multiple quorum quenching enzymes, including two types of AHL-lactonases, in addition to AHL-acylase and oxidoreductase, for which the genes have yet to be described.

Overexpression of Ice Recrystallization Inhibition Protein (HvIRIP) from Barley Enhances Cold Tolerance in Transgenic rapeseed plants (HvIRIP 과발현 유채 형질전환체의 내한성 증진)

  • Roh, Kyung Hee;Park, Jong-Sug;Kang, Han-Chul;Kim, Jong-Bum;Jang, Young-Suk;Kim, Kwang-Soo;Yi, Hankuil
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.4
    • /
    • pp.325-332
    • /
    • 2015
  • Rapeseed (Brassica napus) is now the second largest oilseed crop after soybean. Cold temperature tolerance is an important agronomic trait in winter rapeseed that determines the plant's ability to control below freezing temperatures. To improve cold tolerance of rapeseed plants, an expression vector containing an Barley Ice recrystallization inhibition protein (HvIRIP) cDNA driven by a cauliflower mosaic virus 35S promoter was transferred into rapeseed plants. Transgenic expression of HvIRIP was proved by southern- and northern-blot analyses. The level of freezing tolerance of transgenic $T_3$ plants was found to be significantly greater than that of wild-type rapeseed plants by freezing assay. Proline accumulation during cold stress was also highly induced in the transgenic rapeseed plants. The transgenic plants exhibited considerable tolerance against oxidative damage induced by cold stress. Our results indicated that heterologous HvIRIP expression in transgenic rapeseed plants may induce several oxidative-stress responsive genes to protect from cold stress.

Identification of a Novel Cassette Array in Integron-bearing Helicobacter Pylori Strains Isolated from Iranian Patients

  • Goudarzi, Mehdi;Seyedjavadi, Sima Sadat;Fazeli, Maryam;Roshani, Maryam;Azad, Mehdi;Heidary, Mohsen;Navidinia, Masoumeh;Goudarzi, Hossein
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3309-3315
    • /
    • 2016
  • Helicobacter pylori as the second most common cause of gastric cancer in the world infects approximately half of the developed countries population and 80% of the population living in developing countries. Integrons as genetic reservoirs play major roles in dissemination of antimicrobial resistance genes. To the best of our knowledge, this is the first study to report carriage of class 1 and 2 integrons and associated gene cassettes in H. pylori isolates from Iran. This cross-sectional study was conducted in Tehran among 110 patients with H. pylori infection. Antimicrobial susceptibility testing (AST) for H. pylori strains were assessed by the micro broth dilution method. Class 1 and 2 integrons were detected using PCR. In order to determine gene cassettes, amplified fragments were subjected to DNA sequencing of both amplicon strands. The prevalence of resistance to clarithromycin, metronidazole, clarithromycin, tetracycline, amoxicillin, rifampin, and levofloxacin were 68.2% (n=75), 25.5% (n=28), 24.5% (n=27), 19.1% (n=21), 18.2% (n=20) and 16.4% (n=18), respectively. Frequency of multidrug resistance among H. pylori isolates was 12.7%. Class 2 integron was detected in 50 (45.5%) and class 1 integron in 10 (9.1%) H. pylori isolates. The most predominant gene cassette arrays in class 2 integron-bearing H. pylori were included sat-era-aadA1, dfrA1-sat2-aadA1, blaoxa2 and, aadB whereas common gene cassette arrays in class 1 integron were aadB-aadA1-cmlA6, aacA4, blaoxa2, and catB3. The high frequency of class 2 integron and multidrug resistance in the present study should be considered as a warning for clinicians that continuous surveillance is necessary to prevent the further spread of resistant isolates.

Genetic signature of strong recent positive selection at interleukin-32 gene in goat

  • Asif, Akhtar Rasool;Qadri, Sumayyah;Ijaz, Nabeel;Javed, Ruheena;Ansari, Abdur Rahman;Awais, Muhammd;Younus, Muhammad;Riaz, Hasan;Du, Xiaoyong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.912-919
    • /
    • 2017
  • Objective: Identification of the candidate genes that play key roles in phenotypic variations can provide new information about evolution and positive selection. Interleukin (IL)-32 is involved in many biological processes, however, its role for the immune response against various diseases in mammals is poorly understood. Therefore, the current investigation was performed for the better understanding of the molecular evolution and the positive selection of single nucleotide polymorphisms in IL-32 gene. Methods: By using fixation index ($F_{ST}$) based method, IL-32 (9375) gene was found to be outlier and under significant positive selection with the provisional combined allocation of mean heterozygosity and $F_{ST}$. Using nucleotide sequences of 11 mammalian species from National Center for Biotechnology Information database, the evolutionary selection of IL-32 gene was determined using Maximum likelihood model method, through four models (M1a, M2a, M7, and M8) in Codeml program of phylogenetic analysis by maximum liklihood. Results: IL-32 is detected under positive selection using the $F_{ST}$ simulations method. The phylogenetic tree revealed that goat IL-32 was in close resemblance with sheep IL-32. The coding nucleotide sequences were compared among 11 species and it was found that the goat IL-32 gene shared identity with sheep (96.54%), bison (91.97%), camel (58.39%), cat (56.59%), buffalo (56.50%), human (56.13%), dog (50.97%), horse (54.04%), and rabbit (53.41%) respectively. Conclusion: This study provides evidence for IL-32 gene as under significant positive selection in goat.

Relationship of Fitness and Substance of Porphyrin Biosynthesis Pathway in Resistant Transgenic Rice to Protoporphyrinogen Oxidase (Protox) Inhibitor (Protoporphyrinogen oxidase (Protox) 저해제 저항성 형질전환 벼의 적응성과 Porphyrin 생합성 경로물질과 관련성)

  • Yun, Young-Beom;Kwon, Oh-Do;Back, Kyoung-Whan;Lee, Do-Jin;Jung, Ha-Il;Kuk, Yong-In
    • Korean Journal of Weed Science
    • /
    • v.31 no.2
    • /
    • pp.134-145
    • /
    • 2011
  • The objectives of this study were to investigate fitness difference in growth and rice yield in herbicide-transgenic rice overexpressing Myxococcus xanthus and Arabidopsis thaliana protoporphyrinogen oxidase (Protox) genes and non-transgenic rice. We also aimed to determine whether these fitness differences are related to ALA synthesizing capacity, accumulation of terapyrroles, reactive oxygen species, lipid peroxidation, and antioxidative enzymes at different growth stages of rice. Plant height of the transgenic rice overexpressing M. xanthus (MX) and A. thaliana (AP37) Protox genes at 43, 50, and 65 days after transplanting (DAT) was significantly lower than that of WT. Number of tiller of PX as well as MX and AP37 at 50 and 65 DAT was significantly lower than that of WT. At harvest time, culm length and yield of MX, PX and AP37 and rice straw weight of MX and AP37 were significantly low compared with WT. The reduction of yield in MX, PX, and AP37 was caused by spikelets per panicle and 1000 grain weight, ripened grain, spikelets per panicle, 1000 grain weight, and ripened grain, respectively. On the other hand, 135 the reduction of yield in MX, PX, and AP37 was also observed in another yearly variation experiment. The reduction of rice growth in MX, PX, and AP37 was observed in seedling stage as well as growth duration in field. There were no differences in tetrapyrrole intermediate Proto IX, Mg-Proto IX and Mg-Proto IX monomethyl ester, reactive oxygen species ($H_2O_2$ and ${O_2}^-$), MDA, antioxidative enzymes (SOD, CAT, POX, APX, and GR) and chlorophyll between transgenic lines and wild type, indicating that accumulated tetrapyrrole intermediate and other parameters were not related to growth reduction in transgenic rice. However, ALA synthesizing capacity in MX, PX, and AP37 at one day after exposure to light and 52 DAT was significantly lower than that of WT. Further study is required to elucidate the mechanisms underlying the growth and yield difference between transgenic and WT lines.