• 제목/요약/키워드: casting process

검색결과 1,137건 처리시간 0.021초

레오로지 박판의 전자교반을 응용한 진공 저압주조 제조공정 (Fabrication Process of Rheology Material Thin Plate Using Vacuum Low Pressure Die-casting Process with Electromagnetic Stirring)

  • 장신규;배정운;진철규;강충길
    • 한국주조공학회지
    • /
    • 제32권1호
    • /
    • pp.16-23
    • /
    • 2012
  • In this study, we develop the lower pressure die casting with rheo-forming process of A356 aluminum alloy and vacuum system which can control the crystal size and obtain the high strengthened-light material. Using this process, we fabricate the thin plate for bipolar plate through the low pressure die casting with electromagnetic stirring and vacuum-evacuation which can control the crystal grain by electromagnetic stirring. Thin plate ($110mm{\times}130mm{\times}1mm$) is fabricated by this process. The average Vickers hardness of thin plate is about 77 HV.

실린더 라이너 주조공정에 대한 충전 및 응고해석 (Filling and Solidification Analysis for the Casting Process of Cylinder Liner)

  • 김정훈;김창희
    • 한국주조공학회지
    • /
    • 제24권4호
    • /
    • pp.225-230
    • /
    • 2004
  • Computer simulation of mold filling and solidification has been performed in order to analyze the flow and solidification phenomena for the casting process of cylinder liner. The simulation result of mold filling shows that the molten metal flows into the mold in stable without scattering. The simulation results of solidification indicate that the last solidified area is located in the feeder. The temperature variation in casting is measured in actual casting and the result is compared with calculation result.

연속 주편의 응고와 벌징해석에 관한 연구 (Study for Solidification and Bulging of the Continuous Casting Slab)

  • 조종래
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.30-34
    • /
    • 2000
  • In this paper we analyzed bulging condition which affect the quality of continuous casting steel by using the numerical analytic method. First solidification analyses are performed for each cooling zones. Solidification analysis are carried out by one-dimensuional finite difference method. The bulging deformation of cast slab has been calculated with a two-dimensional elasto-plastic and creep finite element model. The adequacy of the model has been checked against the experimental results. From this study the effects of the process variables such as casting speed cooling condition roll pitch are examined. The results from these analyses would be able to apply to the design of continuous casting process.

  • PDF

Nonlinear dynamics and stability of film casting process

  • Lee, Joo-Sung;Hyun, Jae-Chun
    • Korea-Australia Rheology Journal
    • /
    • 제13권4호
    • /
    • pp.179-187
    • /
    • 2001
  • As part of continuing efforts to investigate nonlinear dynamics and stability of film casting process, our earlier results obtained by Lee et al. (2001b) have been extended in the present study to cover the film casting of both extension thickening and extension thinning fluids. The same instability mechanism and draw resonance criterion previously derived have been found valid here, and a rather complex dynamic behavior of film width in contrast to that of film thickness has also been confirmed. The effect of fluid viscoelasticity on draw resonance, however, exhibits opposite results depending on whether the fluid is extension thickening or thinning, i.e., it stabilizes film casting in the former while destabilizing in the latter. The encapsulation extrusion method which recently has been successfully employed to stabilize industrially important paper coating process, has been theoretically explained in the present study as to why such stabilization is possible.

  • PDF

소실모형주조공정으로 제조한 Al-Si-Mg계 주조합금의 기계적 성질 및 주형 충전성 (Mechanical Properties and Mold Filling Capability of Al-Si-Mg Casting Alloy Fabricated by Lost Foam Casting Process)

  • 김정민;하태형;최경환
    • 한국주조공학회지
    • /
    • 제36권5호
    • /
    • pp.153-158
    • /
    • 2016
  • The lost foam casting process was used to fabricate Al-Si-Mg cast specimens, and the effects of the chemical composition and process variables on the tensile properties and the mold filling ability were investigated. Some porosity formation was observed in thick sections of the casting and better tensile properties were obtained for thin sections, presumably because of their lower porosity and the higher cooling rate. Tensile properties were not clearly enhanced by grain refining treatment with Ti; however, the elongation was significantly improved by Sr modification of the Al-Si-Mg alloy. The mold filling distance was generally proportional to the pouring temperature of the melt, and the distance was also increased by the addition of Ti.

수치해석을 이용한 연주 주편의 역학적 거동 해석 (A Study for the Mechanical Behavior of the Continuous Casting Slab Using Numerical Analysis)

  • 하종수;조종래;이부윤;하만영
    • 한국정밀공학회지
    • /
    • 제17권11호
    • /
    • pp.122-128
    • /
    • 2000
  • In this paper, a bulging condition which affect the quality of continuous casting steel was analyzed by using the numerical analytic method. First, solidification analyses were performed for each cooling zone by one-dimensional finite difference method. The bulging deformation of cast slab has been calculated with a two-dimensional elasto-plastic and creep finite element model. The adequacy of the model has been checked against the experimental results. From this study the effects of the process variables such as casting speed, cooling condition and roll pitch were examined. The results from these analyses would be able to apply to the design of continuous casting process.

  • PDF

자동차용 밸브 하우징의 2 캐비티 다이캐스팅 성형해석에 관한 연구 (A Study on the Forming Analysis of the 2 Cavity Die Casting for Automobile Valve Housing)

  • 이종형;이창헌;이상영;하홍배
    • 한국기계가공학회지
    • /
    • 제5권2호
    • /
    • pp.27-35
    • /
    • 2006
  • Al used in automobiles is mostly material, and according to the innovation of technique is in rapid development. Al die casting is an important field as today's trend of lightweight on automobiles. Valve housing in steering system improves driver's controling. The valve housing which is widely reliable to the most automobiles are developed this moment in our automobile industry. Therefore, they are produced by casting method which cost three times or even more expensive in production. If valve housing which is a part of steering system is produced by gravity casting, the space for manufacturing equipment will be increased, and more time and workers would be brought into service. For such reason, die casting would replace gravity casting in order to minimize cost of time, manpower, and working space. This study is the forming analysis of the 2 cavity die casting for automobile valve housing.

  • PDF

유동 및 응고해석을 이용한 자동차용 부품(하우징)개발에 대한 사례연구 (A Case Study on Developing Automotive Part(Housing) by Filling and Solidification Analysis)

  • 정병국;권홍규
    • 산업경영시스템학회지
    • /
    • 제38권1호
    • /
    • pp.44-51
    • /
    • 2015
  • When manufacturing die casting mold, generally, the casting layout design should be considered based on the relations of injection system, casting condition, gate system, and cooling system. According to the various relations of the conditions, the location of product defects was differentiated. High-qualified products can be manufactured as those defects are controlled by the proper modifications of die casting mold with keeping the same conditions. In this research, Computer Aided Engineering (CAE) simulation was performed with the several layout designs in order to optimize the casting layout design of an automotive part (Housing). In order to apply them into the production die-casting mold, the simulation results were analyzed and compared carefully. With the filling process, internal porosities caused by air entrapments were predicted and also compared with the modification of the gate system and overflow. With the solidification analysis, internal porosities occurring during the solidification process were predicted and also compared with the modified gate system. The simulation results were also applied into the production die-casting mold in order to compare the results and verify them with the real casting samples.

주조공정 설비에 대한 실시간 모니터링을 통한 불량예측에 대한 연구 (A Study on Defect Prediction through Real-time Monitoring of Die-Casting Process Equipment)

  • 박철순;김흥섭
    • 산업경영시스템학회지
    • /
    • 제45권4호
    • /
    • pp.157-166
    • /
    • 2022
  • In the case of a die-casting process, defects that are difficult to confirm by visual inspection, such as shrinkage bubbles, may occur due to an error in maintaining a vacuum state. Since these casting defects are discovered during post-processing operations such as heat treatment or finishing work, they cannot be taken in advance at the casting time, which can cause a large number of defects. In this study, we propose an approach that can predict the occurrence of casting defects by defect type using machine learning technology based on casting parameter data collected from equipment in the die casting process in real time. Die-casting parameter data can basically be collected through the casting equipment controller. In order to perform classification analysis for predicting defects by defect type, labeling of casting parameters must be performed. In this study, first, the defective data set is separated by performing the primary clustering based on the total defect rate obtained during the post-processing. Second, the secondary cluster analysis is performed using the defect rate by type for the separated defect data set, and the labeling task is performed by defect type using the cluster analysis result. Finally, a classification learning model is created by collecting the entire labeled data set, and a real-time monitoring system for defect prediction using LabView and Python was implemented. When a defect is predicted, notification is performed so that the operator can cope with it, such as displaying on the monitoring screen and alarm notification.

Coupled approach of analytical and numerical methods for shape prediction in sheet casting process

  • Chae, Kyung-Sun;Lee, Seong-Jae;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • 제13권3호
    • /
    • pp.131-139
    • /
    • 2001
  • A coupled approach is proposed for the prediction of sheet profile in sheet casting process, which combines one-dimensional analytical method on planar elongational flow region and three-dimensional numerical method on the other region. The strategy is constructed from the observations that the flow domain of sheet casting process can be separated into two parts based old the flow kinematics. The flow field in the central region of sheet, over which the planar elongational flow dominates, is possibly replaced by one-dimensional analytical solution. Then only a partial flow domain near the edge region of sheet, where the flow kinematics cannot be described by the planar elongational flow itself, requires three-dimensional numerical simulation. Good agreement is observed between the coupled approach developed in this study and the full three-dimensional numerical simulation previously developed and reported by the authors. This coupled approach may have provided flexibility with low costs to accommodate a wide range of die sizes in sheet casting process.

  • PDF