• Title/Summary/Keyword: cast-in-place (CIP)

Search Result 38, Processing Time 0.022 seconds

A Study on the Concrete Breakout Capacity of CIP Anchor Bolts under Shear Loading (전단력을 받는 선설치 앵커볼트의 콘크리트 파열파괴강도 평가 연구)

  • Park, Yong-Myung;Jeon, Myeong-Hui;Choi, Myung-Kuk;Kim, Cheol-Hwan;Kim, In-Gi
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.207-215
    • /
    • 2012
  • The 45-degree cone failure theory has been used in concrete anchor bolts design under shear loading, but the CCD (Concrete Capacity Design) method was adopted as a new design method since 2000. However, the method was allowed only for anchor diameters of less than 50mm because it is based on the experimental results of small size anchor bolts. Therefore, it is necessary to develop a rational concrete breakout capacity equation for medium-to-large size anchor bolts with large edge distance. In this study, shear tests on M56 cast-in-place single anchor bolt with edge distance of 350mm were performed using four test specimens. Based on the test results and findings of existing studies, a new equation for the breakout capacity of anchor bolts under shear loading with edge distance of up to 750mm was proposed.

A Study on the Concrete Breakout Capacity Evaluation of Medium-to-Large size CIP Anchor Bolts under Tension Loading (인장하중을 받는 중대형급 선설치 앵커볼트의 콘크리트파괴강도 평가를 위한 연구)

  • Park, Yong-Myung;Jeon, Myeong-Hui;Lee, Kun-Jun;Kim, Cheol-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.493-501
    • /
    • 2011
  • The $45^{\circ}$cone failure theory has been used for concrete anchor bolt design, but the CCD (concrete capacity design) method was adopted as a new design method in 2000. The method was allowed to be used, however, only for anchors with a diameter of less than 50 mm and an embedment depth of less than 635 mm because it is based on the experiment results from medium-sized to small anchor bolts. Therefore, it is necessary to develop a rational concrete breakout capacity equation for medium-sized to large anchor bolts. In this study, tension tests on an M56 cast-in-place single anchor bolt with an effective embedment depth of 400-450 mm were carried out for the five test specimens. Based on the test results together with the other recent test results, the applicability of the concrete breakout capacity equation in the current design code to the large to medium-sized anchor bolts with an embedment depth of 280-1,200 mm was estimated.

Evaluation on Cooling Performance of Ground Source Heat Pump System Equipped with Steel-pipe Civil Structures (강관 토목구조물이 설치된 지열 히트펌프 시스템의 냉방 성능 평가)

  • Seokjae Lee;Jeonghun Yang;Hangseok Choi
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.3
    • /
    • pp.14-22
    • /
    • 2023
  • Steel-pipe civil structures, including steel-pipe energy piles and cast-in-place piles (CIPs), utilize steel pipes as their primary reinforcements. These steel pipes facilitate the circulation of a working fluid through their annular crosssection, enabling heat exchange with the surrounding ground formation. In this study, the cooling performance of a ground source heat pump (GSHP) system that incorporated steel-pipe civil structures was investigated to assess their applicability. First of all, the thermal performance test was conducted with steel-pipe CIPs to evaluate the average heat exchange amount. Subsequently, a GSHP system was designed and implemented within an office container, considering the various types of steel-pipe civil structures. During the performance evaluation tests, parameters such as the coefficient of performance (COP) and entering water temperature (EWT) were closely monitored. The outcomes indicated an average COP of 3.74 for the GSHP system and the EWT remained relatively stable throughout the tests. Consequently, the GSPH system demonstrated its capability to consistently provide a sufficient heat source, even during periods of high cooling thermal demand, by utilzing the steel-pipe civil structures.

Shear Resistance of Unreinforced Cast-In-Place Anchors in Uncracked and Cracked Concrete by Seismic Qualification Tests (지진모의실험에 의한 비균열 및 균열콘크리트에 매입된 비보강 선설치앵커의 전단 저항강도 평가)

  • Park, Yong Myung;Kim, Tae Hyung;Kim, Dong Hyun;Jo, Sung Hoon;Lee, Jong Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.347-357
    • /
    • 2015
  • In this study, an experimental study was performed to evaluate the concrete breakout strength of unreinforced cast-in-place anchors by seismic qualification test under shear loading. The CIP anchors tested herein were 30mm in diameter with an edge distance of 150mm and an embedment depth of 240mm in uncracked and cracked concrete. The cracked specimen consisted of orthogonal and parallel crack to the loading direction, respectively. The dynamic loading sequence during the seismic qualification test was determined based on CSA N287.2, ACI 355.2 and ETAG 001 codes. After the dynamic loading, the static loading was applied until failure occurs. The shear resistance by seismic qualification tests showed almost the same strength as that obtained from the static tests in uncrcaked and cracked concrete, respectively. Meanwhile, the breakout depth did not reach $8d_0$, therefore the modified strength equation of ACI 318-11 could estimate properly the concrete breakout strength, which does not consider effective bearing length.

Shear Strength of Prestressed PC-CIP Composite Beams with Vertical Shear Reinforcement (전단 철근 보강된 프리스트레스 PC와 CIP 합성보의 전단강도)

  • Suh, Jung-Il;Park, Hong-Gun;Hong, Geon-Ho;Kang, Su-Min;Kim, Chul-Goo
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.399-409
    • /
    • 2015
  • Recently, the use of composite construction method using precast (PC) and cast-in-place (CIP) concrete is increased in modular construction. For PC members, pre-tensioning is used to improve efficiency of the structural performance. However, current design codes do not clearly define shear strength of prestressed PC-CIP composite members. In this study, 22 specimens were tested to evaluate shear strength of prestressed composite members with vertical shear reinforcement. The test variables were the area ratio of high-strength (60 MPa) to low-strength concrete (24 MPa), prestressing force of strands, shear span-to-depth ratio(a/d), and vertical shear reinforcement ratio. The test results showed the prestressing force did not completely restrain diagonal cracking of non-prestressed concrete in the web. Thus, the effect of prestress force was not insignificant in the effect for monolithic beams. The vertical shear strength and horizontal shear strength of the composite beams were compared with the strength predictions of KCI design method.

Cyclic loading test for concrete-filled hollow PC column produced using various inner molds

  • Chae-Rim Im;Sanghee Kim;Keun-Hyeok Yang;Ju-Hyun Mun;Jong Hwan Oh;Jae-Il Sim
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.793-804
    • /
    • 2023
  • In this study, cyclic loading tests were conducted to assess the seismic performance of cast-in-place (CIP) concrete-filled hollow core precast concrete columns (HPCC) constructed using steel ducts and rubber tubes. The outer shells of HPCC, with a hollow ratio of 47%, were fabricated using steel ducts and rubber tubes, respectively. Two combinations of shear studs & long threaded bars or cross-deformed bars & V-ties were employed to ensure the structural integrity of the old concrete (outer shell) and new CIP concrete. Up to a drift ratio of 3.8%, the hysteresis loop, yielding stiffness, dissipated energy, and equivalent damping ratio of the HPCC specimens were largely comparable to those of the solid columns. Besides the similarities in cyclic load-displacement responses, the strain history of the longitudinal bars and the transverse confinement of the three specimens also exhibited similar patterns. The measured maximum moment exceeded the predicted moment according to ACI 318 by more than 1.03 times. However, the load reduction of the HPCC specimen after reaching peak strength was marginally greater than that of the solid specimen. The energy dissipation and equivalent damping ratios of the HPCC specimens were 20% and 25% lower than those of the solid specimen, respectively. Taking into account the overall results, the structural behavior of HPCC specimens fabricated using steel ducts and rubber tubes is deemed comparable to that of solid columns. Furthermore, it was confirmed that the two combinations for securing structural integrity functioned as expected, and that rubber air-tubes can be effectively used to create well-shaped hollow sections.

Effect of water cut-off by M.S.G. method for weathered soil and alluvial soil (풍화토 및 충적토 지반에 적용된 M.S.G공법의 차수효과)

  • 지덕진;우상백;강진기;김태한;박종호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.85-92
    • /
    • 2003
  • Generally, ordinary portland cement(OPC) is widely used for grouting to reduce permeability of ground under the foundations of structures. But, it is hard to be injected into the microscopic voids, fissures and crevices in soil or rock formation for the OPC material. Therefore new method what is called MSG(Micro Silica Grouting) has been developed recently to improve the weak point of the OPC material. In this case study, in order to verify performance of the MSG's water cut-off, trial injections were performed in rear of CIP(Cast in Place Pile) on the site A(weathered soil) and B(alluvial soil) that are constructed for the subway No. 9 nowadays. To take the proper grouting method of the MSG in the trial injecting, the injections are carried out for grouting types(constant pressure or fixed Quantity) and grouting methods(1.5shot or 2.0shot) and to confirm the effects of water cut-off and the injection range of the MSG, the tests of permeability and indicator(phenolphthalein) response were performed before and after the injection. Through the tests results, we could affirm the effects of water cut-off of the MSG and the injection range for the weathered and alluvial soil layers near the Han River. Finally we could make sure the application of the MSG method in actual construction under the layers.

  • PDF

Structural Performance of Pre-tensioned Half-depth Precast Panels (프리텐션 반두께 바닥판을 갖는 바닥판의 구조성능 평가)

  • Kim, Dong Wook;Shim, Chang Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1707-1721
    • /
    • 2014
  • Half-depth panels were developed with the merits of CIP (Cast In Place) decks and precast decks for constructability and fast construction. In this paper, details of half-depth panels with pre-tensioning were suggested. For evaluation of structural performance, five half-depth panel specimens were fabricated and static tests were conducted. The cross-sections of these specimens were composed of pre-tensioned half-depth panels and pre-tensioned two-span half-depth panels. Test parameters were the amount of the prestressing force and the longitudinal reinforcements. Static tests on simply-supported slabs showed that ultimate strength was 1.55 times greater than calculated nominal strength. The flexural strength was only 10 % increased and the influence on crack width control was negligible when the member of tendons was increased twice. For two-span continuous specimens, the ultimate strength increased 1.2 times and 1.38 times respectively as the reinforcement was additionally provided. The verified half-depth panels by this research can be effectively utilized for the fast replacement or construction of bridges.