• Title/Summary/Keyword: cast iron disc

Search Result 22, Processing Time 0.024 seconds

Study on Performance Experiment and Analysis of Aluminum Disc Brake (알루미늄 디스크 브레이크의 성능 실험 및 해석에 관한 연구)

  • Ryu, Mi-Ra;Lee, Dae-Hee;Lee, Seong-Beom;Park, Jeong-Ho;Shim, Jae-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.60-68
    • /
    • 2013
  • The present research aims to develop aluminum disc brakes to replace existing cast iron disc brakes in automobiles. The foundation for developing an aluminum disc is laid by investigating the performance characteristics of existing cast iron disc brakes and comparing those characteristics with those of aluminum disc brakes. This study involves FEM thermal/structural analysis of disc materials and experimental tests using a brake dynamometer. The results of this study show that, aluminum discs have not only better thermal/mechanical properties than existing cast iron discs, including better heat, wear, and crack resistance, but also that aluminum discs. Weigh less than existing cast iron discs, which results in improved maneuverability. Aluminum discs will become a more essential part of automobiles as electric cars become the major means of transportation.

Wear Characteristics of Automotive Disc Brakes: Effect of Gray Cast Iron Microstructures (자동차 브레이크용 디스크의 미세조직에 따른 편마모 특성에 관한 연구)

  • Lee, Jae-Young;Kim, Seong-Jin;Han, Chang-Joo;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.235-239
    • /
    • 2002
  • The objective of the experiment is to investigate the effect of microstructures of gray cast iron oil wear characteristics of automotive disc brakes. Six different gray cast iron rotors were manufactured by changing carbon equivalent and cooling rate. The change of DTV (disc thickness variation) before and after wear tests was measured to examine the wear properties according to the microstructures of gray iron discs since the DTV generation is caused by the circumferential uneven wear. Experimental results showed that the morphology of graphite flake and hardness in gray cast iron were crucially associated with the change of DTV. In particular, the DTV changes of rotor decrease when the length and area fraction of graphite flake in brake rotors increase and hardness of brake discs reduces.

  • PDF

A study on the improvement of frictional performance of friction material for automobile brake by spray treatment (용사처리에 의한 자동차 브레이크용 마찰재료의 마찰성능개선에 관한 연구)

  • 김윤해;배창원;손태관
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.67-76
    • /
    • 1998
  • Friction materials for brake linings and clutches have severe performance requirements. The principal function of such frictional elements is to convert kinetic energy to heat, and then either to absorb or to dissipate heat. In order to achieve these objectives, the coefficient of friction must be as high as possible, independent of variations in operating conditions, and the necessary energy conversion must be accomplished with a minimum of wear on the contacting parts. In this study, Al powder, Al bronze powder and Mo powder used in general for automobile brake was sprayed on automobile brake disc to restrain rust and to maintain friction performance. Dynamo and corrosion tests have been carried out. It is concluded that the sprayed disc with Al bronze powder has the most improved frictional performance and anti-corrosive characteristics. The main results obtained can be summarized as follows; 1. From the corrosion current density test for gray cast iron and sprayed disc with powders of Al, Al bronze and Mo, it was cleared that the spray treatment with Al bronze powder showed the most superior anti-corrosive characteristics than other powders. 2. By anode polarization toward the noble direction from corrosion potential, corrosion current density with sprayed brake disc by Al-bronze powder was the lowest. 3. Mean frictional coefficients obtained from dynamo test are as follows : the sprayed disc with Al(99.99%) powder was 0.190 ; the sprayed disc with Al-bronze powder was 0.312 ; the sprayed disc with Mo powder was 0.257 ; the non-sprayed disc of gray cast iron was 0.331. In the case of the sprayed disc Al-bronze powder showed the most excellent frictional characteristics . 4. Amount of burnish quantity obtained from burnish test by dynamometer is as follows : the sprayed disc with Al-powder was 1.079 mm : the sprayed disc with Al-bronze powder was 0.155 mm : the sprayed disc with Mo powder was 0.253 mm : the non-sprayed disc of gray cast iron was 0.241 mm. Al-bronze powder also showed the most excellent burnish characteristics.

  • PDF

Fatigue Crack Growth Behavior of Gray Cast Iron for Brake Disc of a Passenger Car (대형승용차 디스크 브레이크용 회주철의 피로균열 전파 거동)

  • Kim, Ho-Kyung;Park, Jin-Ho;Yang, Kyoung-Tak;Choi, Deok-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.19-24
    • /
    • 2006
  • Fatigue crack propagation tests for the brake disc cast iron were conducted for investigating fatigue crack propagation rate(da/dN), crack propagation path and fracture toughness($K_c$) of the material. The threshold stress intensity factor range, ${\Delta}K_{th}$, was found to be about $6MPa{\sqrt{m}}$ at the stress ratio of R = 0.1. Also, fracture toughness value was determined to be $24.7MPa{\sqrt{m}}$. Irregular fatigue fracture surfaces were observed, indicating that fatigue crack growth occurred at the interface between randomly scattered flak graphite and ferrite, where the interfacial strength was relatively weak.

A Study on Braking Performance of Break Disc (브레이크 디스크의 제동 성능에 관한 연구)

  • Ryu, Mi-Ra;Bae, Hui-Eun;Kim, Hyun-Su;Lee, Dae-Hee;Lee, Seong-Beom;Park, Jeong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.13-20
    • /
    • 2013
  • The present research aims to develop the aluminum disc brake replacing the existing cast iron disc brake. Material such as aluminum using FEM numerical analysis in order to improve the characteristics of each element, we analyze the performance characteristics and braking time you try to change. We try to lay the foundation for the development of an aluminum disc by investigating performance characteristics of the existing cast iron disc brake and comparing them with those of the aluminum disc. This involves FEM dynamics analysis for disc materials and experimental tests using the brake dynamometer. From this study, the results of 7075 aluminum braking performance can be seen that the best.

Tribological Characteristics of Brake Disc for Train (철도차량용 제동 디스크의 트라이볼로지 특성 연구)

  • Kim, Sang-Ho;Lee, Hi-Sung
    • Tribology and Lubricants
    • /
    • v.23 no.1
    • /
    • pp.19-28
    • /
    • 2007
  • Mechanical Brake system is inevitable equipment for stability of train and speed of the train. Especially brake disk and brake pads are core parts of mechanical brake system. It was investigated with tribological characteristics of brake discs for train by using lab-scale dynamometer. Gray cast iron disk was most attacked with sintered brake pad. Alloyed steel disk and NCM cast iron disk had suitable friction coefficient, high stability and low disk attack to the sintered brake pad. But at the view of economy, low alloyed cast iron will be most suitable choice.

Wear Characterisitics of TiN-coated Boron Cast Iron by Arc Evaporation Process (CAE 증착기술에 의해 TiN이 증착된 보론주철의 마모거동)

  • Song, Kun;Yoon, Eui-Sung;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.8 no.1
    • /
    • pp.63-69
    • /
    • 1992
  • In order to gain better understanding of wear behaviors of TiN-coated boron cast iron, tests and analyses were conducted with block-on disc type tribometer. TiN layer of thickness $2 \mu m$ and $4 \mu m$, coated by cathodic arc evaporation process, were experimentally investigated with the variation of applied load and sliding speed under dry sliding condition. Wear characteristics were expressed in terms of the three-dimentional wear map as well as the wear rate vs sliding speed and load. Comparisons of wear and friction characteristics between coated cast irons and uncoated cast irns were also made. Wear mechanism of TiN layer was explained in view of surface interaction between the mating surfaces. The thicker coating exhibited higher hardness and adhesion strength. the significance of stresses at the surface and in the subsurface was briefly discussed in relation to the wear behavior.

A Study on the Surface Grinding Machining Characteristics of FC200 Material (FC200 소재의 평면연삭 가공특성에 관한 연구)

  • Yang, Dong-Ho;Lee, Sang-Hyeop;Cha, Seung-Hwan;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.36-43
    • /
    • 2022
  • Automobile brake discs are a major part of automobiles that are directly related to driver safety, and prevention of judder and squall noise is very important. This phenomenon occurs for complex reasons such as the precision and assembly of the brake module, and the material of the brake disc. The purpose of this study is to analyze the effect of the grinding wheel's grain size on the grinding conditions when machining cast iron, the material of the brake disc, and to derive the optimal grinding conditions through this.

Effects of Alloying Elements on the High Pressure Wear Characteristics of Ductile Cast Iron II - Silicon and Molybdenum (구상흑연주철의 고압하 마멸특성에 미치는 합금원소의 영향 II-Si, Mo)

  • Bang, Woong-Ho;Kang, Choon-Sik;Park, Jae-Hyun;Kweon, Young-Gak
    • Journal of Korea Foundry Society
    • /
    • v.20 no.4
    • /
    • pp.240-246
    • /
    • 2000
  • Surface layer properties such as composition, phase, hardness, and oxide layer condition are very important if the main failure mechanism of metals is wear. Generally, stable and dense oxide layers are known to decrease the wear rate of metals by prohibition of metallic junction occurred between bare metals. Addition of Si above 4 wt% to DCI(Ductile Cast Iron) is reported to enhance the significant oxidation resistance by forming the silicon-rich surface layer which inhibits further oxidation. And addition of up to 2 wt% Mo to high Si ductile iron produces significant increases in high temperature tensile strength, creep strength, thermal fatigue resistance and oxidation resistance. High pressure wear characteristics of unalloyed DCI(Ductile cast Iron), 4.46 wt% Si ductile iron, 4.3 wt% Si-0.52 wt% Mo ductile iron were investigated through unlubricated pin-on-disc wear test. Wear test was carried out at speed of 23m/min, under pressure of 3 MPa and 3.3 MPa. Wear surfaces of each specimen were observed by SEM to determine the wear mechanism under high pressure wear condition. Addition of Si 4.46 wt% severely deteriorated wear property of ductile iron compared to unalloyed DCI. But combined addition of Si 4.3 wt%andMo0.52wt%decreasedthefrictioncoefficient(${\mu}$)ofductileironsandremarkablydelayedthemild-severeweartransition.

  • PDF

Characteristics Evaluation of Light Brake disc and Linning for Railway Vehicle In Terms of Tribology (트라이볼로지 관점에서 철도차량의 경량 제동 디스크와 라이닝의 특성 평가)

  • Kim, Sung-Kwon;Lee, Hi-Sung;Kwon, Seok-Jin;Kwon, Sung-Tae
    • Tribology and Lubricants
    • /
    • v.27 no.2
    • /
    • pp.95-100
    • /
    • 2011
  • The brake disc materials for railway vehicle have been mainly used cast-iron. The brake disc and pad should be light, resist to a thermal crack and absorb enough friction energy. In order to satisfy this requirement, aluminum alloy brake disc for railway vehicle has been newly developed. The aluminum itself has not been considered the friction material for railway vehicle. However, in the case of aluminum composite with dispersed ceramic particles, friction characteristics, resistance to wear and heat are much improved. In the present study, aluminum composite brake disc of 20% ceramic particle and three kinds of organic pads have been tested in dynamometer. The results show that Al MMC brake disc and pad have good friction coefficient and wear rate, and thermal cracks in brake disc have not been initiated. Also, the Al MMC brake disc can be applied to railway vehicle of 150 km/h.