• Title/Summary/Keyword: cast film

Search Result 127, Processing Time 0.032 seconds

Preparation and Water Vapor Barrier Properties of PET/Nanohybrid PI Films (폴리에스테르/폴리이미드 나노복합필름의 제조 및 수분차단 특성)

  • Han, Seung San;Kim, Yong Seok;Won, Jong Chan;Lee, Jae Heung;Choi, Kil-Yeong
    • Journal of Adhesion and Interface
    • /
    • v.5 no.1
    • /
    • pp.29-35
    • /
    • 2004
  • We have prepared polyster/nanQhybridized polyimide films in the range of 1~9 wt% of organophilic synthetic layered silicate (STN). Firstly, poly(amic acid)/STN nanocomposite solutions were prepared via solution blending method in DMAc or THF/MeOH solution, and then cast on the polyester film followed by imidization reaction, thermal and chemical method repestively. XRD and TEM experiment showed that the STN was fully exfoliated through the polyimide matrix. Surface morphologies of nanohybridized polyimide films were characterized by AFM and thermal, mechanical properties were also confirmed by TGA, DMA and UTM each. And also, the water vapor permeabilities highly depended on the content of STN. The sample from chemical imidization route and THF/MeOH solvent system showed better water vapor barrier properties than thermal one and DMAc system.

  • PDF

Synthesis and Characteristics of Organic Soluble Polyaniline by Emulsion Polymerization (유화 중합법에 의한 유기 용매 가용형 폴리아닐린의 합성 및 그 특성)

  • 김진열;권시중;한성원;김응렬
    • Polymer(Korea)
    • /
    • v.27 no.6
    • /
    • pp.549-554
    • /
    • 2003
  • Emeraldine salt of polyaniline-dodecylbenzenesulfdnic acid (PANI-DBSA) in organic solvents such as toluene and xylene was obtained by a direct one-step emulsion polymerization technique. When the molar ratio of DBSA to aniline monomer was 1.5:1, its solubility and electric property showed a maximum value and then the solid contents of PANI-DBSA was 8 wt% in toluene. The cast film of PANI-DBSA with no binder was obtained on glass or plastic substrates under ambient conditions. PANI solution can be also easily blended with polyurethane and polystyrene polymers in toluene. Improved electrical performance up to 5 S/cm was achieved with good light-transmittance up to 70% at 500 m thickness. They also showed more homogeneous morphology than that prepared with PANI-DBSA kom aqueous dispersion polymerization. The partially dispersed PANI-DBSA showed particles sizes of 50-400 m in organic solvents and their XRD pattern were observed from the powder sample.

The Complexing Effect of $BaTiO_3\;for\;Bi_4Ti_3O_{12}$ on Layered Perovskite $Bi_4Ti_3O_{12}{\cdot}nBaTiO_3(n=1&2)$ Thin Films ($Bi_4Ti_3O_{12}{\cdot}nBaTiO_3(n=1&2)$ 박막에서 $Bi_4Ti_3O_{12}$ 에 대한 $BaTiO_3$의 복합효과)

  • 신정묵;고태경
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.11
    • /
    • pp.1130-1140
    • /
    • 1998
  • Thin films of $Bi_4Ti_3O_{12}\;nBaTiO_3(n=1&2)$ were prepared using sols erived Ba-Bi-Ti complex alkoxides. The sols were spin-cast onto $Pt/Ti/SiO_2/Si$ substrates and followed by pyrolysis for 1 hr at $620^{\circ}C,\;700^{\circ}C\;and\;750^{\circ}C$ In the thin films a pyrochlore phase seemed to be formed at a lower temperature and then tran-formed to the layered perovskite phase as the heating temperature increased. In the thin films pyrolyzed at formed to the layered perovskte phase as the heating temperature increased. In the films pyrolyzed at $750^{\circ}C$ the amount of $Bi_4Ti_3O_{12}{\cdot}BaTiO_3$ reached to 94% while $Bi_4Ti_3O_{12}{\cdot}BaTiO_3$ was 77% in composition. This result shows that the formation of the layered pervoskite phase becomes difficult as the amount of complexing $BaTiO_3$ increases. The microstructures and the electrical properties of the thin films were gen-erally improved with the incease of the heating temperature. However the presence of the pyrochlore phase could not be removed effectively. Our study showed that the electrical properties of $Bi_4Ti_3O_{12}{\cdot}BaTiO_3$ were pronouncedly improved with complexing with BaTiO3 when compared to those of $Bi_4Ti_3O_{12}$ while the presence of the pyrochlore phase was detrimental to the those of $Bi_4Ti_3O_{12}{\cdot}2BaTiO_3$.

  • PDF

The Conservation and Current Condition of the Excavated Metallic Objects (출토금속 문화재의 보존과 현황)

  • Moon, Whan Suk
    • Journal of Conservation Science
    • /
    • v.6 no.2 s.8
    • /
    • pp.141-148
    • /
    • 1997
  • When we have entered high economic growth since 1970s, many archaeological excavations were performed all over the country. Excavated objects composed of variable materials are inevitably subjected to deformations owing to surrounding environments and storage conditions. Although the importance of conservation treatment of the objects is greatly increased, a few conservation laboratories are there comparing with excavation groups. The metallic objects excavated are very unstable and deformable state. So it is important not to allow iron objects, especially cast iron, to dry out once excavated. Because the corrosion reactions on the surface proceed rapidly, the objects may be destroyed at the moment. The conservation procedures of the excavated metallic objects are as follows: (1)It is stable on-site storage method for objects to keep vinyl film with envelop or to immerse alkaline solution to prevent the environmental changes. (2)The objects must be treated at once under suitable methods in the conservation laboratory after excavation. (3)The continued existence of objects depends on environmental factors such as relative humidities, regular inspection, light etc.

  • PDF

APPLICATION OF COLD SPRAY COATING TECHNIQUE TO AN UNDERGROUND DISPOSAL COPPER CANISTER AND ITS CORROSION PROPERTIES

  • Lee, Min-Soo;Choi, Heui-Joo;Choi, Jong-Won;Kim, Hyung-Jun
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.557-566
    • /
    • 2011
  • A cold spray coating (CSC) of copper was studied for its application to a high-level radioactive waste (HLW) disposal canister. Several copper coatings of 10 mm thick were fabricated using two kinds of copper powders with different oxygen contents, and SS 304 and nodular cast iron were used as their base metal substrates. The fabricated CSC coppers showed a high tensile strength but were brittle in comparison with conventional non-coating copper, hereinafter defined to as "commercial copper". The corrosion behavior of CSC coppers was evaluated by comparison with commercial coppers, such as extruded and forged coppers. The polarization test results showed that the corrosion potential of the CSC coppers was closely related to its purity; low-purity (i.e., high oxygen content) copper exhibited a lower corrosion potential, and high-purity copper exhibited a relatively high corrosion potential. The corrosion rate converted from the measured corrosion current was not, however, dependent on its purity: CSC copper showed a little higher rate than that of commercial copper. Immersion tests in aqueous HCl solution showed that CSC coppers were more susceptible to corrosion, i.e., they had a higher corrosion rate. However, the difference was not significant between commercial copper and high-purity CSC copper. The decrease of corrosion was observed in a humid air test presumably due to the formation of a protective passive film. In conclusion, the results of this study indicate that CSC application of copper could be a useful option for fabricating a copper HLW disposal canister.

Preparation and Surface Properties of Polysulfone/Organophilic Layered Silicate Nanocomposites (폴리설폰/친유기화 층상실리케이트 나노복합체의 제조 및 표면 특성)

  • Sul, Kyung-Il;Ma, Seung Lac;Kim, Yong Seok;Lee, Jae Heung;Won, Jong Chan
    • Journal of Adhesion and Interface
    • /
    • v.4 no.4
    • /
    • pp.15-21
    • /
    • 2003
  • Polysulfone/organophilic layered silicate nanocomposites were prepared in the range of 0.25 to 9 wt% of organophilic-layered silicate by solution blend. Nano-hybridized films were cast from the blend solution. Exfoliation and intercalation of the polysulfone/organophiliclayered silicate nanocomposite films were confirmed by an X-ray diffractometer and a transmission electron microscope. Surface morphologies of polysulfone/organophilic layered silicate nanocomposite films were determined by a scanning electronic microscope and an atomic force microscope. When the organophilic layered silicate was added more than 1.5 wt%, the surface roughness (RMS) was rapidly increased because clusters of intercalated organophilic layered silicate particles existed on the polysulfone/organophilic-layered silicate film surface. Surface tension revealed an upward tendency over the contents of 1.5 wt% organophilic layered silicate in polysulfone/organophilic layered silicate nanocomposite. The change of surface morphology in polysulfone/organophilic layered silicate nanocomposite were affected by nano scale dispersed and intercalated organophilic layered silicate particles.

  • PDF

Coagulant bath medium effect towards polylactic acid membranes structure and methylene blue dye removal

  • Amira M. Nasib;Stephen Simon;Syahmie M. Rasidi;Siti Kartini E. Ab. Rahim;Hoo Peng Yong;Ng Qi Hwa;Khairiraihanna Johari
    • Advances in materials Research
    • /
    • v.13 no.3
    • /
    • pp.243-251
    • /
    • 2024
  • The asymmetric polylactic acid (PLA) membrane was prepared via phase inversion method using non-solvent induced separation (NIPS) technique. This study aims to synthesized as well as to characterize the PLA membrane and evaluating the membrane performance on water flux and permeability. In addition, this research also studied the removal performance of methylene blue dye. The polymer solution has been prepared using 12 wt.% of PLA and dissolved in 88 wt.% of Dimethylacetamide (DMAc) as a solvent. Then, the cast film was immersed in different ratio of coagulant bath medium (distilled water: methanol: ethanol) ranging from 100:0:0, 75:25:0, 75:0:25 and 75:12.5:12.5, respectively). Several characterizations were performed which include, membrane contact angle and membrane porosity. Performance PLA membranes were determined in terms of water flux and permeability at 1 bar transmembrane pressure using dead-end permeation cell. Finally, methylene blue (MB) removal efficiency was tested at the same transmembrane pressure. The findings revealed that the increase of alcohol concentration in coagulant bath resulted in higher porosity and lower contact angle. In short, MB dye rejection efficiency is also closely related to the amount of alcohol ratio used in coagulant baths. Increases in concentration of methanol and ethanol in coagulant bath medium increases the membrane porosity thus increased in efficiency of methylene blue rejection.

The Behavior of Pitting Corrosion Associated with Microstructure of a Cast Lean Duplex Stainless Steel in Chloride Environments (염화물 환경에서 린 듀플렉스 스테인리스 주강의 미세조직과 연계한 공식 거동)

  • In-Sung Lee;Soon-Tae Kim;Chae-Jin Nam;Seung-Man Yang;In-Sung Cho;Seung-Mok Yoo
    • Journal of Korea Foundry Society
    • /
    • v.43 no.5
    • /
    • pp.230-240
    • /
    • 2023
  • The pitting corrosion behavior of 329LD cast lean duplex stainless steel and CF3M cast austenitic stainless steel was investigated in chloride environments. The pitting corrosion resistance of the 329LD alloy was superior to that of the CF3M alloy because the pitting potential, passive region, and critical pitting temperature of the low Ni-low Mo 329LD alloy were higher than those of the high Ni-medium Mo commercial CF3M alloy. There are two main reasons for the enhancement of the pitting corrosion resistance of high Cr-low Momedium N 329LD alloy compared to the low Cr-medium Mo CF3M alloy: First, the pitting resistance equivalent number (PRENδ+γ) value of the 329LD alloy is higher than that of the CF3M alloy. Second, the passive region of the 329LD alloy is larger than that of the CF3M alloy. It indicates that the synergistic effect of the three elements by adding high Cr and low Mo-medium N to the 329LD alloy enhances the passivity of the passive film, thereby increasing the pitting corrosion resistance. It was verified that based on the PRENγ of austenite (γ) and PRENδ of ferrite (δ) values calculated using an N-factor of 16, the pitting corrosion of the 329LD alloy was selectively initiated at the γ-phases because PRENγ value of austenite (γ) was smaller than that of ferrite (δ), and finally propagated from the γ-phase to the δ-phase.

Novel Thin Film Composite Forward Osmosis Membranes of Highly Enhanced Water Flux with Interlayer Polysiloxane Between Polysulfone and Polyamide (폴리술폰과 폴리아미드 경계층에 형성된 폴리실록산을 이용한 정삼투 복합 박막의 유량 향상)

  • Jung, Boram;Kim, Nowon
    • Membrane Journal
    • /
    • v.26 no.5
    • /
    • pp.391-400
    • /
    • 2016
  • In this work, novel thin film composite (TFC) forward osmosis (FO) membranes are developed via interfacial polymerization on the polysulfone (PS) substrate, using TEOS as the a sol-gel reagent to form hydrophilic interlayer polymer between PS and polyamide (PA). The PS substrate was cast on a very thin polyester nonwoven to reduce membrane resistance. With the incorporation of TEOS (tetraethoxy silane) polymer in the interface between PS and PA, the formed TFC FO membrane exhibits better hydrophilicity and improved water flux, and therefore superior membrane performance. By changing the polymerization sequence of PA interfacial polymerization and TEOS sol-gel condensation, the surface properties and performance of FO membranes are changed significantly. The permeability of FO membranes were estimated using the bench-scale FO test equipment. The distribution of the polysiloxane on composite membrane and morphology are also studied with FE-SEM and EDAX. The PS_PA_TEOS membrane showed highly enhanced water flux (79.2 LMH) but reverse salt flux (RSF) value (7.10 GMH) also increased. However, the flux of PS_TEOS_PA membrane increased moderately (54.1 LMH) without increasing RSF value (1.60 GMH) compare with PS_PA membrane.

A Study on Salt Removal in Controlled Cultivation Soil Using Electrokinetic Technology (전기동력학 기술을 이용한 시설재배지 토양의 염류제거 효과연구)

  • Kim, Lee Yul;Choi, Jeong Hee;Lee, You Jin;Hong, Soon Dal;Bae, Jeong Hyo;Baek, Ki Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1230-1236
    • /
    • 2012
  • To verify that the electrokinetic remediation is effective for decreasing salinity of fields of the plastic-film house, field tests for physical property, chemical property, and crop productivity of soils have been conducted. The abridged result of those tests is as follows. In the EK treatment, the electrokinetic remediation has been treated at the constant voltage (about 0.8 V $cm^{-1}$) for fields of the farm household. At this time, an alternating current (AC) 220 V of the farm household was transformed a direct current. The HSCI (High Silicon Cast Iron) that the length of the stick for a cation is 20cm, and the Fe Plate for an anion have been spread out on the ground. As the PVC pipe that is 10 cm in diameter was laid in the bottom of soils, cations descend on the cathode were discharged together. For soil physical properties according to the EK treatment, the destruction effect of soil aggregate was large, and the infiltration rate of water was increased. However, variations of bulk density and porosity were not considerable. Meanwhile, in chemical properties of soils, principal ions of such as EC, $NO_3{^-}$-N, $K^+$, and $Na^+$ were better rapidly reduced in the EK treated control plot than in the untreated control plot. And properties such as pH, $P_2O_5$ and $Ca^{2+}$ had a small impact on the EK. For cropping season of crop cultivation according to the EK treatment, decreasing rates of chemical properties of soils were as follows; $NO_3{^-}$-N 78.3% > $K^+$ 72.3% > EC 71.6% $$\geq_-$$ $Na^+$ 71.5% > $Mg^{2+}$ 36.8%. As results of comparing the experimental plot that EK was treated before crop cultivation with it that EK was treated during crop cultivation, the decreasing effect of chemical properties was higher in the case that EK was treated during crop cultivation. After the EK treatment, treatment effects were distinct for $NO_3{^-}$-N and EC that a decrease of nutrients is clear. However, because the lasting effect of decreasing salinity were not distinct for the single EK treatment, fertilization for soil testing was desirable carrying on testing for chemical properties of soils after EK treatments more than two times. In the growth of cabbages according to the EK treatment, the rate of yield increase was 225.5% for the primary treatment, 181.0% for the secondary treatment, and 124.2% for third treatment compared with the untreated control plot. The yield was increased by a factor of 130.0% for the hot pepper at the primary treatment (Apr. 2011), 248.1% for the lettuce at the secondary treatment (Nov.2011), and 125.4% for the young radish at the third treatment (Jul. 2012). In conclusion, the effect of yield increase was accepted officially for all announced crops.