• Title/Summary/Keyword: cast

Search Result 3,532, Processing Time 0.033 seconds

A Study on Addition of Rare Earth Element in the Spent Permanent Magnet Scrap to Gray Cast Iron (회주철에서의 폐 영구자석 스크랩을 활용한 희토류 원소 첨가 영향 연구)

  • Park, Seung-Yeon;Noh, Jung-Hyun;Kim, Hyo-jung;Lim, Kyoung-Mook
    • Resources Recycling
    • /
    • v.27 no.3
    • /
    • pp.48-57
    • /
    • 2018
  • In this study, we developed a method for manufacturing high strength gray cast irons by adding a rare earth element (R.E.) included in a spent permanent magnet scrap to gray cast irons. The improvement of the mechanical properties of gray cast irons is attributed to A-type graphite formation promoted by complex sulfide, which was formed by R.E. in the spent magnets during a solidification process. The cast specimen inoculated by R.E. in the spent magnet scrap showed excellent tensile strength up to 306 MPa, and is similar to that of the specimen inoculated by expensive misch-metal. In this regards, we concluded that the cheap spent magnets scrap is a very efficient inoculation agent in fabrication of high performance gray cast irons.

A Study on the Borided Stsucture of Cast Iron (주철(鑄鐵)의 침붕조직(浸硼組織)에 관(關)한 연구(硏究))

  • Kim, H.S.;Ra, H.Y.
    • Journal of Korea Foundry Society
    • /
    • v.2 no.3
    • /
    • pp.2-15
    • /
    • 1982
  • In this study, the influenced of graphite shape on the boriding of cast iron and boride structure was investigated. Gray cast iron, ferritic and pearlitic ductile cast iron were borided at 750,850,900 and $950^{\circ}C$ for 1,3 and 5 hours by powder pack method with the mixture of $B_4C_9\;Na_2B_4O_7$, $KBF_4$ and Shc. The boride layer was consisted of FeB(little), $Fe_2B$ (main) and graphite. Some possibility of the existence of unknown Fe-B-C compound in the boride layer was suggested. And precipitates in the diffusion zone was $Fe_3(B,C)$. The concentration of Si and precipitation of $Fe_3(B,C)$ in the ${\alpha}$ layer raised the hardness of this Zone. The depth and hardness of boride layer increased with the increase of treating temperature and tim. But high temperature (over $950^{\circ}C)$ caused pore at graphite position and long treating time (5hrs) sometimes caused formation of graphite layer beneath the boride layer. So, for the practical application of borided cast iron, treating in short time and at low temperature was recommended. And for ductile cast iron, ferritizing or pearlitizing heat treatment was seemmed to be possible at the same time with boriding. The graphite in the boride layer was deeply concerned with the qualitx and characteristics of the boride layer. And it greatly influenced on the shape of the boride phase, structure of the boride layer. Generally speaking, the existance of graphite restrained the growth of the boride phase. But the boundary between the gsaphite and the matrix acted as the shortcut of boron diffusion. So, for gray cast iron, the graphite layed length-wise led the formation of boride layer.

  • PDF

A Study on the Manufacture of Aluminum Tie-Rod End by Casting/Forging Process (주조/단조 기술을 이용한 알루미늄 타이로드 엔드 제조에 관한 연구)

  • Kim, Hyo-Ryang;Seo, Myung-Kyu;You, Min-Su;Bae, Won-Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.180-185
    • /
    • 2002
  • Aluminum casting/forging process is used to produce an aluminum tie-rod end for the steering system of automobiles. Firstly, casting experiments were carried out to get a good preform for forging the tie-rod end. In the casting experiment, the effects of additives, Ti+B, Zr, Sr, and Mg, on the mechanical properties and the microstructure of a cast preform were investigated. And a finite element analysis was performed to determine an optimal configuration of the cast preform. Lastly, a forging experiment was carried out to make the final product of aluminum tie-rod end by using the above cast preform. In the casting experiments, when 0.2% Ti+B and 0.25% Zr were simultaneously added into molten Al-Si alloy, the highest values of tensile strength and elongation of the cast preform were obtained. When 0.04% Sr were added into the molten aluminum alloy, the finest silicon-structure was observed in the cast preform. The highest hardness was obtained when 0.2% Mg was added. In the forging experiment, It was confirmed that the optimal configuration of a cast preform predicted by FE analysis was very useful. The hardness of a cast/forged product using designed preform was superior to that of required specification.

Effects of Pouring Temperature and Alloying Elements on Damping Capacity and Mechanical Properties in 3.6%C Grey Cast Iron (3.6%C 회주철의 진동감쇠능 및 기계적 성질에 미치는 주입온도 및 합금원소 첨가의 영향)

  • Kim, J.C.;Baik, S.H.;Choi, C.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.4
    • /
    • pp.231-238
    • /
    • 2000
  • Flake graphite cast irons with the high damping capacity have been used for the control of vibration and noise occurring in the members of various mechanical structures under vibrating conditions. However, the damping capacity which is morphological characteristics of graphite is one of the important factors in reducing the vibration and noise, but hardly any work has deal with this problem. Therefore, the authors have examined the damping capacity of various cast irons with alloying elements and studied the influences of the matrix structures, mechanical properties and morphological characteristics of graphite. The main results obtained are as follows: Effects of pouring temperature on the damping capacities and mechanical properties were investigated in 3.6%C cast iron. At $1400^{\circ}C$, specific damping capacity showed the maximum value, and decreased with increase pouring temperature. Mechanical properties showed opposite trend with the damping capacity. And then, effects of Ni on the damping capacities and mechanical properties have been investigated in 3.6%C gray cast iron. At 0.2%Ni content, specific damping capacity showed the maximum value, and decreased with further increase in Ni content. Graphite length also showed same behavior. This indicates that the specific damping capacity has a close relation with graphite length. In case of Mo addition in 3.6%C-0.2%Ni cast iron, specific damping capacity and tensile strength was 27% and $20kgf/mm^2$ at 3.6%C-0.2%Ni-0.3%Mo cast iron respectively.

  • PDF

A Study on the Manufacture of WC MMCs by In-situ Reaction Process(1);The Formation Mechanism of Interfacial Reaction Layer in Cast-bonded Cast iron/W wire and Its Structure (기지내 반응법에 의한 WC 복합재료의 제조에 관한 연구(1);주조접합된 주철/텅스텐 와이어의 계면반응층 생성기구와 조직특성)

  • Park, Heung-Il;Kim, Chang-Up;Huh, Bo-Young;Lee, Sung-Youl;Kim, Chang-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.15 no.3
    • /
    • pp.272-282
    • /
    • 1995
  • Iron-based metal matrix composites have been recently investigated for the use of inexpensive abrasion resistance material. This paper carried out to investigate the in-situ reaction effects on the microstructural characteristics and the formation mechanism of tungsten carbides in a white cast iron matrix. The specimens of Fe-3.2%C-2.8%Si alloy cast-bonded with tungsten wire were cast in the metal mold and isothermally heat treated at $950^{\circ}C$ up to 48 hours. The typical microstructure of heat treated specimens showed the reaction layer of WC at the interface of tungsten wire and the carbon depletion zone between the WC layer and the matrix. During the formation of WC layer, if the carbon supply is insufficient due to the decarburization of matrix or the isolation of matrix by cast-bonded W wires, the reaction layer develops coarse hexagonal crystalline WC. From the microstructural investigation, it was found that the volume of WC layer and the carbon depletion zone increased linearly with the isothermal heat treating time. This results supported that the formation rate of WC in the white cast iron matrix is controlled by the interfacial reaction with a constant reaction rate.

  • PDF

A comparative study of gold UCLA-type and CAD/CAM titanium implant abutments

  • Park, Ji-Man;Lee, Jai-Bong;Heo, Seong-Joo;Park, Eun-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.1
    • /
    • pp.46-52
    • /
    • 2014
  • PURPOSE. The aim of this study was to evaluate the interface accuracy of computer-assisted designed and manufactured (CAD/CAM) titanium abutments and implant fixture compared to gold-cast UCLA abutments. MATERIALS AND METHODS. An external connection implant system (Mark III, n=10) and an internal connection implant system (Replace Select, n=10) were used, 5 of each group were connected to milled titanium abutment and the rest were connected to the gold-cast UCLA abutments. The implant fixture and abutment were tightened to torque of 35 Ncm using a digital torque gauge, and initial detorque values were measured 10 minutes after tightening. To mimic the mastication, a cyclic loading was applied at 14 Hz for one million cycles, with the stress amplitude range being within 0 N to 100 N. After the cyclic loading, detorque values were measured again. The fixture-abutment gaps were measured under a microscope and recorded with an accuracy of ${\pm}0.1{\mu}m$ at 50 points. RESULTS. Initial detorque values of milled abutment were significantly higher than those of cast abutment (P<.05). Detorque values after one million dynamic cyclic loadings were not significantly different (P>.05). After cyclic loading, detorque values of cast abutment increased, but those of milled abutment decreased (P<.05). There was no significant difference of gap dimension between the milled abutment group and the cast abutment group after cyclic loading. CONCLUSION. In conclusion, CAD/CAM milled titanium abutment can be fabricated with sufficient accuracy to permit screw joint stability between abutment and fixture comparable to that of the traditional gold cast UCLA abutment.

As-Cast and Solidification Structures of Fe-3%C-x%Cr-y%V-w%Mo-z%W Multi- Component White Cast Irons (Fe-3%C-x%Cr-y%V-w%Mo-z%W 다합금계백주철의 주방상태 및 급냉조직)

  • Yu, sung-Kon;Shin, Sang-Woo
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.414-422
    • /
    • 2002
  • Three different multi-component white cast irons alloyed with Cr, V, Mo and W were prepared in order to study their as-cast and solidification structures. Three combinations of the alloying elements were selected so as to obtain the different types of carbides and matrix structures : 3%C-10%Cr-5%Mo-5%W(alloy No.1), 3%C-10%V-5% Mo-5%W(alloy No. 2) and 3%C-17%Cr-3% V(alloy No.3). The as-cast microstructures were investigated with optical and scanning electron microscopes. There existed two different types of carbides, $M_7C_3$ carbide with rod-like morphology and $M_6C$ carbide with fishbone-like one, and matrix in the alloy No. 1. The alloy No. 2 consisted of MC carbide with chunky and flaky type and needle-like $M_2C$ carbide, and matrix. The chunky type referred to primary MC carbide and the flaky one to eutectic MC carbide. The morphology of the alloy No. 3 represented a typical hypo-eutectic high chromium white cast iron composed of rod-like $M_7C_3$ carbide which is very sensitive to heat flow direction and matrix. To clarify the solidification sequence, each iron(50g) was remelted at 1723K in an alumina crucible using a silicon carbide resistance furnace under argon atmosphere. The molten iron was cooled at the rate of 10K/min and quenched into water at several temperatures during thermal analysis. The solidification structures of the specimen were found to consist of austenite dendrite(${\gamma}$), $ ({\gamma}+ M_7C_3)$ eutectic and $({\gamma}+ M_6C)$ eutectic in the alloy No. 1, proeutectic MC, austenite dendrite(${\gamma}$), (${\gamma}$+MC) eutectic and $({\gamma}+ M_2C)$ eutectic in the alloy No. 2, and proeutectic $M_7C_3$ and $ ({\gamma}+ M_7C_3)$ eutectic in the alloy No 3. respectively.

Effects of Alloying Elements and Heat Treatments on the Microstructures and Mechanical Properties of Ductile Cast Iron by Strip Casting (스트립캐스팅한 구상흑연주철박판의 합금원소 및 열처리에 따른 미세조직과 기계적 성질의 변화)

  • Lee, Gi-Rak;Ra, Hyung-Yong
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.122-128
    • /
    • 2000
  • Strip casting process is a new technology that makes a near net shape thin strip directly from molten metal. With this process, a large amount of energy and casting cost could be decreased from the abbreviation of reheating and/or hot rolling process. Ductile cast iron which has spheroidal graphite in the matrix is the most commercial and industrial material, because of its supreme strength, toughness, and wear resistance etc. But it cannot be produced to the thin strip owing to difficulty in rolling of ductile cast iron. In this study, ductile cast iron strips are produced by the twin roll strip caster, with different chemical compositions of C, Si, and Mn contents. And then heat-treated, microstructures and mechanical properties are examined. The microstructures of as-cast strip are that of white cast iron which consists of the mixture of cementite and pearlite, but the equiaxed crystal zone of the pearlite or segregation zone of cementite exists in the center region of the strip thickness, which cannot be observed in the rapidly solidified metallic mold cast specimens. This structure is supposed to be formed from the thermal distribution of strip and the rolling force. Comparing with the structures of each strips after heat treatment, increasing Si content makes smaller spheroidal graphite and more compact in the matrix, furthermore the less of Mn content makes the ferrite matrix be obtained clearer and easier. As a result of the tensile test of graphitization heat-treated strips, the yield strengths are about 250 MPa, the tensile strengths are about $430{\sim}500$ MPa, and the elongations are about $10{\sim}13%$. In the case of the strip which has the smaller and more compact spheroidal graphite in the ferrite matrix, the higher tensile strength and better drawability could be obtained.

  • PDF

Effects of Testosterone on Adipose Tissue Metabolism (지방조직대사에 대한 testosterone의 영향)

  • Jeong, Sunhyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2995-3000
    • /
    • 2013
  • We investigated the effects of testosterone on the improvement of white adipose tissue explant and its molecular mechanism in adipose tissue of high fat diet-fed male castrated (CAST) mice. The CAST mice treated with testosterone had lower adipose tissue weights, the average size of adipocytes and mRNA levels of $C/EBP{\alpha}$ as well as adipocyte marker genes than the vehicle-treated CAST mice. These results suggest that testosterone prevent the expression of $C/EBP{\alpha}$ and $C/EBP{\alpha}$-mediated adipocyte marker genes, resulting in decreased adipose tissue mass and adipocyte metabolism in male CAST mice. Moreover, this study give a valuable molecular and biological knowledge on testosterone therapy in obese hypogonadal men.

A Study of 3D Printing of Self-Customization Cast by Using Fused Deposition Modeling Technique of ABS Resin (ABS 수지의 용융적층조형방식에 의한 자가 맞춤형 부목의 3차원 출력 사례 연구)

  • Seoung, Youl-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6019-6026
    • /
    • 2015
  • In this study, we have tried to use 3D-printing technology, which is very useful for small amount production and individual personalization manufacturing to produce a cast customized by individual. To do this, we have made casts by the 3D printer in the method of fused deposition modeling technique using ABS(acrylonitrile butadiene styrene) resin which is thermoplastic plastics. The computed tomography of human hand part was used as the modeling of the cast and it was designed to circulate air well. As a result, an individual personalized cast that fitted well with the model part was produced. In addition, we could get more excellent radiography from the cast than the existing cast. In conclusion, this study of 3D-printing could be used as basic data when a similar designed structure in fused deposition modeling technique by ABS resin is printed out.