• Title/Summary/Keyword: caspase-9

Search Result 651, Processing Time 0.03 seconds

Ginsenoside compound-Mc1 attenuates oxidative stress and apoptosis in cardiomyocytes through an AMP-activated protein kinase-dependent mechanism

  • Hong, So-hyeon;Hwang, Hwan-Jin;Kim, Joo Won;Kim, Jung A.;Lee, You Bin;Roh, Eun;Choi, Kyung Mook;Baik, Sei Hyun;Yoo, Hye Jin
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.664-671
    • /
    • 2020
  • Background: Ginsenoside compound-Mc1 (Mc1) is a member of the deglycosylated ginsenosides obtained from ginseng extract. Although several ginsenosides have a cardioprotective effect, this has not been demonstrated in ginsenoside Mc1. Methods: We treated H9c2 cells with hydrogen peroxide (H2O2) and ginsenoside Mc1 to evaluate the antioxidant effects of Mc1. The levels of antioxidant molecules, catalase, and superoxide dismutase 2 (SOD2) were measured, and cell viability was determined using the Bcl2-associated X protein (Bax):B-cell lymphoma-extra large ratio, a cytotoxicity assay, and flow cytometry. We generated mice with high-fat diet (HFD)-induced obesity using ginsenoside Mc1 and assessed their heart tissues to evaluate the antioxidant effect and the fibrosis-reducing capability of ginsenoside Mc1. Results: Ginsenoside Mc1 significantly increased the level of phosphorylated AMP-activated protein kinase (AMPK) in the H9c2 cells. The expression levels of catalase and SOD2 increased significantly after treatment with ginsenoside Mc1, resulting in a decrease in the production of H2O2-mediated reactive oxygen species. Treatment with ginsenoside Mc1 also significantly reduced the H2O2-mediated elevation of the Bax:Bcl2 ratio and the number of DNA-damaged cells, which was significantly attenuated by treatment with an AMPK inhibitor. Consistent with the in vitro data, ginsenoside Mc1 upregulated the levels of catalase and SOD2 and decreased the Bax:B-cell lymphoma-extra large ratio and caspase-3 activity in the heart tissues of HFD-induced obese mice, resulting in reduced collagen deposition. Conclusion: Ginsenoside Mc1 decreases oxidative stress and increases cell viability in H9c2 cells and the heart tissue isolated from HFD-fed mice via an AMPK-dependent mechanism, suggesting its potential as a novel therapeutic agent for oxidative stress-related cardiac diseases.

Identification of 5-Hydroxy-3,6,7,8,3',4'-Hexamethoxyflavone from Hizikia fusiforme Involved in the Induction of the Apoptosis Mediators in Human AGS Carcinoma Cells

  • Kim, Min Jeong;Lee, Hye Hyeon;Seo, Min Jeong;Kang, Byoung Won;Park, Jeong Uck;Kim, Kyoung-Sook;Kim, Gi-Young;Joo, Woo Hong;Choi, Yung Hyun;Cho, Young-Su;Jeong, Yong Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1665-1672
    • /
    • 2012
  • An 80% ethanol extract of Hizikia fusiforme was obtained and followed by successive fractionation using the organic solvents n-hexane, ethyl acetate, and n-butanol to identify the antioxidative substance. The aqueous part of the nbutanol fractionation step, showing high antioxidative activity, was subjected to reverse-phase liquid chromatography. As a result, a substance purified from a BB-2 fraction showed high antioxidative activity. The m/z 419 [M+H] molecular ion peak in the fraction was observed by the analysis of the ESI-LC/MS spectrum. By the analysis of 1H NMR (500 MHz, DMSO-$d_6$) and $^{13}C$ NMR (125 MHz, DMSO-$d_6$) spectra, a unique compound of the fraction was biochemically identified as a 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone (5HHMF). We also investigated the effect of 5HHMF on human gastric AGS carcinoma cells. Western blot analysis suggested that the flavone substantially increased the levels of the death receptor-associated apoptosis mediators Fas, Fas L, FADD, TRADD, and DR4 in a concentration-dependent manner. The levels of Fas, Fas L, TRADD, and DR4 in the cells treated with 5HHMF ($5{\mu}g/ml$) were approximately 26.4-, 12.8-, 6.7-, and 9.8-times higher than those of non-treated cells, respectively. Of note, the level of FADD protein in the cells exposed to 5HHMF ($1{\mu}g/ml$) increased approximately 9.6-times. In addition, the cleavage of caspase-3, -8, and -9 in cultured AGS cells treated with 5HHMF was significantly confirmed. Therefore, our results suggest that 5HHMF from H. fusiforme is involved in the induction of death receptor-associated apoptosis mediators in human gastric AGS carcinoma cells.

Anti-oxidative and Anti-cancer Activities of Methanol Extract of Machaerium cuspidatum (Machaerium cuspidatum 메탄올 추출물의 항산화 및 항암활성에 관한 연구)

  • Jin, Soojung;Oh, You Na;Park, Hyun-jin;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.432-441
    • /
    • 2016
  • Machaerium cuspidatum, a canopy liana, is a species of genus legume in the Fabaceae family and contributes to the total species richness in the tropical rain forests. In the present study, we investigated the antioxidative and anti-cancer effects of M. cuspidatum and its mode of action. The methanol extract of M. cuspidatum (MEMC) exhibited anti-oxidative activity with an $IC_{50}$ value of $1.66{\mu}g/ml$, and this was attributable to its 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity. MEMC also exhibited a cytotoxic effect and induced morphological changes in a dose-dependent manner in several cancer cell lines including human lung adenocarcinoma A549 cells, human hepatocellular carcinoma HepG2 cells, and human colon carcinoma HT29 cells. Moreover, MEMC treatment induced the accumulation of subG1 population, which is indicative of apoptosis in A549 and HepG2 cells. MEMC-induced apoptosis was confirmed by the increase in Annexin V-positive apoptotic cells and apoptotic bodies using Annexin-V staining and DAPI staining, respectively. Further investigation showed that MEMC-induced apoptosis was associated with the increase in p53 and Bax expression, and the decrease in Bcl-2 expression. In addition, MEMC treatment led to proteolytic activation of caspase-3, 8, and 9 and degradation of poly-ADP ribose polymerase (PARP). Taken together, these results suggest that MEMC may exert a beneficial anti-cancer effect by inducing apoptosis via both the extrinsic and intrinsic pathways in A549 and HepG2 cells.

Effects of Mifepristone and Tamoxifen on Calcium Modulation in DU-145 Prostate Cancer Cells (DU-145 전립선 암세포에 있어서 mifepristone과 tamoxifen이 칼슘조절에 미치는 영향)

  • Kim, Yeo-Reum;Kim, Byeong-Gee
    • Journal of Life Science
    • /
    • v.20 no.9
    • /
    • pp.1324-1331
    • /
    • 2010
  • Mifepristone (MIF) and Tamoxifen (TAM) have been used in the treatment of prostate cancer and breast cancer for more than a decade. MIF can induce apoptosis in both AR-positive and negative prostate cancer cells. Because of its pleiotropic ligand-receptor properties, TAM exerts cytotoxic activity in estrogen (ER)-positive and various ER.negative cancer cells. However, the molecular mechanisms of these two substances are not yet clear. In the present work, we report that the cytotoxic effects of MIF and TAM are due to the modulation of intracellular $Ca^{2+}$ level in DU-145, androgen-insensitive cells. When the cells were treated with micromolar concentrations of either MIF or TAM, the growth and viability were significantly decreased in a dose- and time-dependent manner. The apoptosis induced by MIF or TAM was further proved and analyzed by confocal laser scanning microscopy (CLSM) and fluorescence-activated cell sorting (FACS). In the cells cultivated in a normal 1.5 mM $Ca^{2+}$ medium, both MIF and TAM also induced an increase of the intracellular $Ca^{2+}$ level in a dose-dependent fashion. Since a change in calcium level could not be found in cells of the $Ca^{2+}$-free medium, the increase of intracellular $Ca^{2+}$ level might be due to an increase in extracellular calcium uptake. Our results show that the apoptotic effect was more prominent in TAM treatment compared to MIF treatment in DU-145 cells. The above findings might be due to the difference in the uppermost pathways of apoptosis induced by either MIF or TAM. When we checked the level of procaspase-8 activation, TAM showed minor level of activation, as opposed to MIF, which exerted strong activation. In both treatments, the levels of anti-apoptotic protein Bcl-2 decreased, and pro-apoptotic protein Bax level increased more than 2-fold. The activation of caspase-3, a key protease enzyme in the downstream pathway of apoptosis, was much higher in the cells treated with TAM, compared to the MIF treatment. The overall apoptotic activity shown in the present work was closely related to intracellular $Ca^{2+}$ concentration levels. Therefore, the cytotoxic activity induced by MIF and TAM might have been due to intracellular calcium modulation.

NF-${\kappa}B$ Activation and cIAP Expression in Radiation-induced Cell Death of A549 Lung Cancer Cells (A549 폐암세포주의 방사선-유도성 세포사에서 NF-${\kappa}B$ 활성화 및 cIAP 발현)

  • Lee, Kye Young;Kwak, Shang-June
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.5
    • /
    • pp.488-498
    • /
    • 2003
  • Background : Activation of the transcription factor NF-${\kappa}B$ has been shown to protect cells from tumor necrosis factor-alpha, chemotherapy, and radiation-induced apoptosis. NF-${\kappa}B$-dependent cIAP expression is a major antiapoptotic mechanism for that. NF-${\kappa}B$ activation and cIAP expression in A549 lung cancer cells which is relatively resistant to radiation-induced cell death were investigated for the mechanism of radioresistance. Materials and methods : We used A549 lung cancer cells and Clinac 1800C linear accelerator for radiation. Cell viability test was done by MTT assay. NF-${\kappa}B$ activation was tested by luciferase reporter gene assay, Western blot for $I{\kappa}B{\alpha}$ degradation, and electromobility shift assay. For blocking ${\kappa}B$, MG132 and transfection of $I{\kappa}B{\alpha}$-superrepressor plasmid construct were used. cIAP expression was analyzed by RT-PCR and cIAP2 promoter activity was performed using luciferase assay system. Results : MTT assay showed that cytotoxicity even 48 hr after radiation in A549 cells were less than 20%. Luciferas assay demonstrated weak NF-${\kappa}B$ activation of $1.6{\pm}0.2$ fold compared to PMA-induced $3.4{\pm}0.9$ fold. Radiation-induced $I{\kappa}B{\alpha}$ degradation was observed in Western blot and NF-${\kappa}B$ DNA binding was confirmed by EMSA. However, blocking NF-${\kappa}B$ using MG132 and $I{\kappa}B{\alpha}$-superrepressor transfection did not show any sensitizing effect for radiation-induced cell death. The result of RT-PCR for cIAP1 & 2 expression was negative induction while TNF-${\alpha}$ showed strong expression for cIAP1 & 2. The cIAP2 promoter activity also did not show any change compared to positive control with TNF-${\alpha}$. Conclusion : We conclude that activation of NF-${\kappa}B$ does not determine the intrinsic radiosensitivity of cancer cells, at least for the cell lines tested in this study.

Cytoprotective Effects of Schisandrin A against Hydrogen Peroxide-induced Oxidative Stress in SW1353 Human Chondrocytes (SW1353 인간 연골세포에서 산화적 스트레스에 대한 schisandrin A의 세포 보호 효과)

  • Jeong, Jin-Woo;Choi, Eun Ok;Kwon, Da Hye;Kim, Bum Hoi;Park, Dong Il;Hwang, Hye Jin;Kim, Byung Woo;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.27 no.9
    • /
    • pp.1070-1077
    • /
    • 2017
  • Chondrocyte apoptosis induced by reactive oxygen species (ROS) plays an important role in the pathogenesis of osteoarthritis. Schisandrin A, a bioactive compound found in fruits of the Schisandra genus, has been reported to possess multiple pharmacological and therapeutic properties. Although several studies have described the antioxidant effects of analogues of schisandrin A, the underlying molecular mechanisms of this bioactive compound remain largely unresolved. The present study investigated the cytoprotective effect of schisandrin A against oxidative stress (hydrogen peroxide [$H_2O_2$]) in SW1353 human chondrocyte cells. The results showed that schisandrin A preconditioning significantly inhibited $H_2O_2-induced$ growth inhibition and apoptotic cell death by blocking the degradation of poly (ADP-ribose) polymerase proteins and down-regulating pro-caspase-3. These antiapoptotic effects of schisandrin A were associated with attenuation of mitochondrial dysfunction and normalization of expression changes of proapoptotic Bax and antiapoptotic Bcl-2 in $H_2O_2-stimulated$ SW1353 chondrocytes. Furthermore, schisandrin A effectively abrogated $H_2O_2-induced$ intracellular ROS accumulation and phosphorylation of histone H2AX at serine 139, a widely used marker of DNA damage. Thus, the present study demonstrates that schisandrin A provides protection against $H_2O_2-induced$ apoptosis and DNA damage in SW1353 chondrocytes, possibly by prevention of ROS generation. Collectively, our data indicate that schisandrin A has therapeutic potential in the treatment of oxidative disorders caused by overproduction of ROS.

Induction of Apoptosis and Inhibition of Growth in Human Gastric Cancer by Piperine (Piperine에 의한 위암세포 AGS 증식 억제와 Apoptosis 유도)

  • Shin, Seong-Ah;Lee, Hae-Nim;Choo, Gang-Sik;Kim, So-Jung;Kim, Hyeong-Jin;Park, Young-Seok;Park, Byung-Kwon;Kim, Byeong-Soo;Kim, Sang-Ki;Lee, Hu-Jang;Jung, Ji-Youn
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.11
    • /
    • pp.1589-1594
    • /
    • 2016
  • Piperine [(E,E)-5-(3,4-methtylenedioxyphenyl)-2,4-pentadienolypiperidide] is a principal of Piperaceae, including Piper nigrum L. and Piper longum Linn., which has been used as a spice and traditional medicine. In this study, we investigated whether or not piperine has anti-cancer effects on AGS human gastric cancer cells. The results demonstrated that piperine not only inhibited proliferation using MTT assay but also induced apoptotic bodies using DAPI assay in a dose-dependent manner in response to piperine. Expression levels of p53, Bax (pro-apoptotic), cleaved caspase-9, and cleaved-PARP increased, whereas expression levels of Bcl-2, XIAP (anti-apoptotic), and Akt decreased in a dose-dependent manner compared with the control by western blotting analysis. To identify the connection between phospo-Akt and Bcl-2 family in response to piperine, LY249002 (Akt inhibitor) was treated with piperine ($150{\mu}M$). The results were shown that expression of phospo-Akt was reduced whereas expression of Bax and cleaved-PARP increased in a dose-dependent manner. These results indicate that piperine induced apoptosis in AGS cells and may serve as a chemopreventive or therapeutic agent for human gastric cancer.

Induction of Apoptosis in HT-29 Human Colorectal Cancer by Aloin (인간 대장암 세포 HT-29에서 Aloin에 의한 Apoptosis 유도)

  • Yoo, Eun-Seon;Woo, Joong-Seok;Kim, Sung-Hyun;Lee, Jae-Han;Han, So-Hee;Jung, Soo-Hyun;Park, Young-Seok;Kim, Byeong-Soo;Kim, Sang-Ki;Park, Byung-Kwon;Jung, Ji-Youn
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.5
    • /
    • pp.495-501
    • /
    • 2019
  • Aloin [1,8-Dihydroxy-10-(${\beta}$-D-glucopyranosyl)-3-(hydroxymethyl)-9(10H)-anthracenone], is a natural anthraquinone from aloe. It has been shown to have antioxidant and anticancer effects in various types of human cancer cells, but the anticancer effects of aloin in human colorectal cancer cells HT-29 have not been elucidated. In this study, possible mechanisms by which aloin exerts its apoptotic action in cultured human colorectal cancer HT-29 cells were investigated. The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay shows that treatment with aloin (0, 100, 200, 300 and $400{\mu}M$) reduced cell viability in a concentration-dependent manner in HT-29 and showed no effects on cell proliferation in A375SM and AGS cells. In addition, it was confirmed that apoptotic body was significantly increased as shown by 4',6-diamidino-2-phenylindole (DAPI) staining, and increased apoptosis rate by flow cytometry in HT-29 cells treated with aloin (0, 200 and $400{\mu}M$). We confirmed by western blotting that aloin activated Bax (pro-apoptotic), cleaved-poly (ADP-ribose) polymerase (PARP) and caspase-3, -8 and Bcl-2 (anti-apoptotic) were not changed compared with the control. Aloin induced up-regulation of phospho-p38 and down-regulation of phospho-extracellular signal-regulated kinase (ERK)1/2. Therefore, aloin suppressed the growth inhibitory effects by the induction of apoptosis in human colorectal cancer cells and has potential as a cancer preventive medicine.

Curcumin-induced Cell Death of Human Lung Cancer Cells (Curcumin에 의해 유도되는 인간 폐암 세포주의 세포사멸)

  • Hwasin Lee;Bobae Park;Sun-Nyoung Yu;Ho-Yeon Jeon;Bu Kyung Kim;Ae-Li Kim;Dong Hyun Sohn;Ye-Rin Kim;Sang-Yull Lee;Dong-Seob Kim;Soon-Cheol Ahn
    • Journal of Life Science
    • /
    • v.33 no.9
    • /
    • pp.713-723
    • /
    • 2023
  • Lung cancer is a type of cancer that has the highest mortality rate. It is mainly classified into small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). Chemotherapy is used to treat lung cancer, but long-term treatment causes side effects and drug resistances. Curcumin is a bright yellow polyphenol extracted from the root of turmeric. It has biological activities, such as anti-oxidant, anti-cancer, and anti-inflammatory effects. In this study, we observed differential cell death in human lung cancer cells. Based on the results, curcumin at 10, 30, and 50 μM exhibited a dose-dependent inhibition on the cell survival of several lung cancer cells, with minor differential phenotypes. In addition, apoptosis, autophagy, and reactive oxygen species (ROS) regeneration were observed through flow cytometry. Curcumin dose-dependently increased these phenotypes in A549 (NSCLC) and DMS53 (SCLC), which were restored by corresponding inhibitors. Western blotting was performed to measure the level of expression of apoptosis- and autophagy-related proteins. The results indicate that Bax, PARP, pro-caspase-3, and Bcl-2 were dose-dependently regulated by curcumin, with seemingly higher Bax/Bcl-2 ratios in DMS53. In addition, autophagic proteins, p-AKT, p62, and LC3B, were dose-dependently regulated by curcumin. ROS inhibition by diphenyleneiodonium reduced the induction of apoptosis and autophagy generated by curcumin. Taken together, it is suggested that curcumin induces apoptosis and autophagy via ROS generation, leading to cell death, with minor differences between human lung cancer cells.

Anti-cancer Potentials of Rhus verniciflua Stokes, Ulmus davidiana var. japonica Nakai and Arsenium Sublimatum in Human Gastric Cancer AGS Cells (AGS 인체위암세포에서 건칠, 유근피 및 신석 추출물의 항암 활성 비교 연구)

  • Baek, Ilsung;Im, Lyeng-Hae;Park, Cheol;Cho, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.849-860
    • /
    • 2015
  • The anti-cancer activities of Rhus verniciflua Stokes (GC), Ulmus davidiana var. japonica Nakai (UGP) and arsenium sublimatum (SS) extracts, which have been used Oriental medicine therapy for various diseases, were investigated. The treatment of GC, UGP and SS alone, and combined treatment with GC, UGP and SS did not affect the cell viability in the mouse normal cell lines (RAW 264.7 macrophages and C2C12 myoblasts). However, co-treatment with GC, UGP and SS markedly induces apoptosis in human gastric cancer AGS cells, but not in other various cancer cell lines (human lung cancer A549, colon cancer HCT116, liver cancer Hep3B and bladder T24 cells) as evidenced by formation of apoptotic bodies, chromatin condensation, and accumulation of annexin-V positive cells. Co-treatment with GC, UGP and SS effectively induced the expression levels of Fas and Fas ligand, and inhibited the levels IAP family proteins such as XIAP, cIAP-1 and survivin, and anti-apoptotic Bcl-xL proteins compared with treatment with either agent alone. Combined treatment also significantly induced the loss of mitochondrial membrane potential, which was associated with the activation of caspases (-3, -8, and -9) and degradation of poly (ADP-ribose) polymerase. However, the cytotoxic effects induced by co-treatment with GC, UGP and SS were significantly attenuated by pan-caspases inhibitor, z-VAD-fmk, indicating an important role for caspases. These results indicated that the caspases were key regulators of apoptosis in response to co-treatment of GC, UGP and SS in human gastric cancer AGS cells and further studies will be needed to identify the active compounds.