• Title/Summary/Keyword: caspase-3 protease

Search Result 77, Processing Time 0.019 seconds

The Therapeutic Effects of Optimal Dose of Mesenchymal Stem Cells in a Murine Model of an Elastase Induced-Emphysema

  • Kim, You-Sun;Kim, Ji-Young;Huh, Jin Won;Lee, Sei Won;Choi, Soo Jin;Oh, Yeon-Mok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.78 no.3
    • /
    • pp.239-245
    • /
    • 2015
  • Background: Chronic obstructive pulmonary disease is characterized by emphysema, chronic bronchitis, and small airway remodeling. The alveolar destruction associated with emphysema cannot be repaired by current clinical practices. Stem cell therapy has been successfully used in animal models of cigarette smoke- and elastase-induced emphysema. However, the optimal dose of mesenchymal stem cells (MSCs) for the most effective therapy has not yet been determined. It is vital to determine the optimal dose of MSCs for clinical application in emphysema cases. Methods: In the present study, we evaluated the therapeutic effects of various doses of MSCs on elastase-induced emphysema in mice. When 3 different doses of MSCs were intravenously injected into mice treated with elastase, only $5{\times}10^4$ MSCs showed a significant effect on the emphysematous mouse lung. We also identified action mechanisms of MSCs based on apoptosis, lung regeneration, and protease/antiprotease imbalance. Results: The MSCs were not related with caspase-3/7 dependent apoptosis. But activity of matrix metalloproteinase 9 increased by emphysematous lung was decreased by intravenously injected MSCs. Vascular endothelial growth factor were also increased in lung from MSC injected mice, as compared to un-injected mice. Conclusion: This is the first study on the optimal dose of MSCs as a therapeutic candidate. This data may provide important basic data for determining dosage in clinical application of MSCs in emphysema patients.

Apoptosis of Human Hepatocarcinoma (HepG2) and Neuroblastoma (SK-N-SH) Cells Induced by Polysaccharides-Peptide Complexes Produced by Submerged Mycelial Culture of an Entomopathogenic Fungus Cordyceps sphecocephala

  • Oh, Jung-Young;Baek, Yu-Mi;Kim, Sang-Woo;Hwang, Hye-Jin;Hwang, Hee-Sun;Lee, Sung-Hak;Yun, Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.512-519
    • /
    • 2008
  • Three different polysaccharide-peptide complexes (PPC, named as Fr-I, Fr-II, and Fr-III) were produced by submerged mycelial culture of an entomopathogenic fungus Cordyceps sphecocephala, and their anticancer activities were investigated in human hepatocarcinoma (HepG2) and neuroblastoma (SK-N-SH) cells. The highest inhibitory effects of PPC on both HepG2 and SK-N-SH cells were achieved with Fr-I, whereas Fr-III with low molecular mass showed lower inhibition effects. Interestingly, the inhibitory effects of the three fractions were increased after protease digestion, suggesting that the inhibitory effects resulted mainly from the carbohydrate moiety, at least in the case of Fr-II and Fr-III, of PPC. The results of DNA fragmentation in PPC-induced apoptotic cells were confirmed by both DNA ladder assay and comet assay. Our investigation also showed that PPC-induced apoptosis of both cancer cells was associated with intracellular events including DNA fragmentation, activation of caspase-3, and modulation of Bcl-2 and Bax. We conclude that PPC has potential as a novel therapeutic agent for the treatment of both HepG2 and SK-N-SH cancer cells without any cytotoxicity against normal cells.

Anti-proliferation, Cell Cycle Arrest, and Apoptosis Induced by Natural Liquiritigenin from Licorice Root in Oral Squamous Cell Carcinoma Cells (구강편평세포암종 세포에서 감초 유래 Liquiritigenin의 항증식, 세포주기 정지 및 세포사멸 유도)

  • Kwak, Ah-Won;Yoon, Goo;Chae, Jung-Il;Shim, Jung-Hyun
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.295-302
    • /
    • 2019
  • Liquiritigenin (LG) is a chiral flavonoid isolated from the roots of licorice. It exhibits multiple biological activities including anti-oxidant, anti-cancer, and anti-inflammatory effects. In particular though, the anti-cancer activity of LG in oral squamous cell carcinoma has yet to be elucidated, and LG-induced apoptosis in oral squamous cell carcinoma remains poorly understood. In the present study, we tested the role of LG in inducing apoptosis in oral squamous cell carcinoma cells. LG treatment of HN22 cells resulted in a dose-dependent inhibition of cell viability as detected by a 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide assay. The induction of apoptosis in terms of Annexin V/7-Aminoactinomycin D staining, sub-G1 population, and multi-caspase activity were assessed with a $Muse^{TM}$ Cell Analyzer. Flow cytometric analysis revealed that LG treatment resulted in G2/M arrest in cell cycle progression and downregulation of cyclin B1 and CDC2 expression in a concentration-dependent manner. It also resulted in significant upregulation of p27. In addition, LG was seen to trigger the generation of reactive oxygen species and induce CCAAT/enhancer-binding protein homologous protein and 78-kDa glucose-regulated protein in concentration-dependent upregulation. The LG treatment of HN22 cells led to a loss of mitochondrial membrane potential (${\Delta}{\Psi}m$); it also reduced the levels of anti-apoptotic protein and increased the expression of apoptotic protease activating factor-1, cleaved poly (ADP-ribose)polymerase and Bax. Overall, our results indicate that the pro-apoptotic effects of LG in HN22 cells depend on the activation of both intrinsic and extrinsic signaling pathways. Thus, our results suggest that LG constitutes a natural compound with a potential role as an anti-tumor agent in oral squamous cell carcinoma.

Cytoprotective Effects of Bohyulmyunyuk-dan in Cisplatin-treated Brain Cells (Cisplatin을 처리한 뇌세포에서 보혈면역단의 세포방어효과)

  • Kang Tai Hee;Moon Gu;Moon Suk Jae;Won Jin Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.2
    • /
    • pp.296-302
    • /
    • 2002
  • Bohyulmyunyuk-dan is an Oriental herbal formulation to enhance the general body conditions as well as immune response against both endogenous and exogenous harmful challenges. This study was designed to investigate the effect of Bohyulmyunyuk-dan on the cisplatin-induced toxicity of primary rat astrocytes and C6 glioma cells. After trestment of astrocytes and C6 glioma cells with cisplatin, MTT assay was carried out to measure cytotoxicity of brain cells. To explore the mechanism of cytotoxicity, astrocytes were treated with Bohyulmyunyuk-dan and followed by the addition of cisplatin. Then, the protective effects of Bohyulmyunyuk-dan were investigated in apoptosis signaling pathway. The results were obtained as follows ; Bohyulmyunyuk-dan protected the death of astrocytes by cisplatin, which decreased the viability of astrocytes and C6 glioma cells in a time- and dose-dependent manner. Bohyulmyunyuk-dan protected the apoptotic death of astrocytes from cisplatin induced cell apoptosis. Bohyulmyunyuk-dan inhitited the activation of caspase-3 and -9 protease in astrocytes by cisplatin. Bohyulmyunyuk-dan inhibited the deavage of PARP in astrocytes by cisplatin. According to above results, Bohyulmyunyuk-dan may prevent brain cells from cytotoxicity induced cell apoptosis induced by chemotherapeatic agents induding displatin.

Protective Effects of Radix Polygalae on Dopamine-induced Cell Death in Human SH-SY5Y Dopaminergic Neuroblastoma Cells (도파민 유도성 SH-SY5Y 세포독성에 대한 원지의 방어기전 연구)

  • Lee Ji Yong;Park Jae Hyeon;Kim Kyung Yeol;Kim Tae Heon;Kang Hyung Won;Lyu Young Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.544-552
    • /
    • 2004
  • In oriental medicine, Radix Polygalae(RP) has been to treat tremors et al. But the mechanism how to decrease tremors was not known. The purpose of this study was to investigate the effect of RP on neurodegenerative disease. We used RP to execute the study of this defense mechanism on dopamine-induced cell death in human SH-SY5Y dopaminergic neuroblastoma cells. MTT assay was used to know the cytotoxicity of dopamine and the defense mechanism. As a result of this experiment, dopamine had cytotoxicity in human SH-SY5Y cells, but when it treated with RP, the cell survival rate increased. This suppressed the cell apoptosis, activation of caspase-3 protease, production of ROS, and repair of membrane potential change. In conclusion, RP has the protective effect on dopamine-induced cell death in human SH-SY5Y dopaminergic neuroblastoma cells, so this could be an effective agent on the neurodegenerative disease like Parkinsonism.

Transition Metal Induces Apoptosis in MC3T3E1 Osteoblast: Evidence of Free Radical Release

  • Chae, Han-Jung;Chae, Soo-Wan;Kang, Jang-Sook;Yun, Dong-Hyeon;Bang, Byung-Gwan;Kang, Mi-Ra;Kim, Hyung-Min;Kim, Hyung-Ryong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.1
    • /
    • pp.47-54
    • /
    • 2000
  • Transition metal ions including $Se^{2+},\;Cd^{2+},\;Hg^{2+}\;or\;Mn^{2+}$ have been thought to disturb the bone metabolism directly. However, the mechanism for the bone lesion is unknown. In this study, we demonstrated that MC3T3E1 osteoblasts, exposed to various transition metal ions; selenium, cadmium, mercury or manganese, generated massive amounts of reactive oxygen species (ROS). The released ROS were completely quenched by free radical scavengers-N-acetyl cysteine (NAC), reduced glutathione (GSH), or superoxide dismutase (SOD). First, we have observed that selenium $(10\;{\mu}M),$ cadmium $(100\;{\mu}M),$ mercury $(100\;{\mu}M)$ or manganese (1 mM) treatment induced apoptotic phenomena like DNA fragmentation, chromatin condensation and caspase-3-like cysteine protease activation in MC3T3E1 osteoblasts. Concomitant treatment of antioxidant; N-acetyl-L-cysteine (NAC), reduced-form glutathione (GSH), or superoxide dismutase (SOD), prevented apoptosis induced by each of the transition metal ions. Catalase or dimethylsulfoxide (DMSO) has less potent inhibitory effect on the apoptosis, compared with NAC, GSH or SOD. In line with the results, nitroblue tetrazolium (NBT) stain shows that each of the transition metals is a potent source of free radicals in MC3T3E1 osteoblast. Our data show that oxidative damage is associated with the induction of apoptosis in MC3T3E1 osteoblasts following $Se^{2+},\;Cd^{2+},\;Hg^{2+}\;or\;Mn^{2+}$ treatment.

  • PDF

Effects of Mifepristone and Tamoxifen on Calcium Modulation in DU-145 Prostate Cancer Cells (DU-145 전립선 암세포에 있어서 mifepristone과 tamoxifen이 칼슘조절에 미치는 영향)

  • Kim, Yeo-Reum;Kim, Byeong-Gee
    • Journal of Life Science
    • /
    • v.20 no.9
    • /
    • pp.1324-1331
    • /
    • 2010
  • Mifepristone (MIF) and Tamoxifen (TAM) have been used in the treatment of prostate cancer and breast cancer for more than a decade. MIF can induce apoptosis in both AR-positive and negative prostate cancer cells. Because of its pleiotropic ligand-receptor properties, TAM exerts cytotoxic activity in estrogen (ER)-positive and various ER.negative cancer cells. However, the molecular mechanisms of these two substances are not yet clear. In the present work, we report that the cytotoxic effects of MIF and TAM are due to the modulation of intracellular $Ca^{2+}$ level in DU-145, androgen-insensitive cells. When the cells were treated with micromolar concentrations of either MIF or TAM, the growth and viability were significantly decreased in a dose- and time-dependent manner. The apoptosis induced by MIF or TAM was further proved and analyzed by confocal laser scanning microscopy (CLSM) and fluorescence-activated cell sorting (FACS). In the cells cultivated in a normal 1.5 mM $Ca^{2+}$ medium, both MIF and TAM also induced an increase of the intracellular $Ca^{2+}$ level in a dose-dependent fashion. Since a change in calcium level could not be found in cells of the $Ca^{2+}$-free medium, the increase of intracellular $Ca^{2+}$ level might be due to an increase in extracellular calcium uptake. Our results show that the apoptotic effect was more prominent in TAM treatment compared to MIF treatment in DU-145 cells. The above findings might be due to the difference in the uppermost pathways of apoptosis induced by either MIF or TAM. When we checked the level of procaspase-8 activation, TAM showed minor level of activation, as opposed to MIF, which exerted strong activation. In both treatments, the levels of anti-apoptotic protein Bcl-2 decreased, and pro-apoptotic protein Bax level increased more than 2-fold. The activation of caspase-3, a key protease enzyme in the downstream pathway of apoptosis, was much higher in the cells treated with TAM, compared to the MIF treatment. The overall apoptotic activity shown in the present work was closely related to intracellular $Ca^{2+}$ concentration levels. Therefore, the cytotoxic activity induced by MIF and TAM might have been due to intracellular calcium modulation.