• Title/Summary/Keyword: cash-flow method

Search Result 88, Processing Time 0.019 seconds

The Study on the Elaboration of Technology Valuation Model and the Adequacy of Volatility based on Real Options (실물옵션 기반 기술가치 평가모델 정교화와 변동성 유효구간에 관한 연구)

  • Sung, Tae-Eung;Lee, Jongtaik;Kim, Byunghoon;Jun, Seung-Pyo;Park, Hyun-Woo
    • Journal of Korea Technology Innovation Society
    • /
    • v.20 no.3
    • /
    • pp.732-753
    • /
    • 2017
  • Recently, when evaluating the technology values in the fields of biotechnology, pharmaceuticals and medicine, we have needed more to estimate those values in consideration of the period and cost for the commercialization to be put into in future. The existing discounted cash flow (DCF) method has limitations in that it can not consider consecutive investment or does not reflect the probabilistic property of commercialized input cost of technology-applied products. However, since the value of technology and investment should be considered as opportunity value and the information of decision-making for resource allocation should be taken into account, it is regarded desirable to apply the concept of real options, and in order to reflect the characteristics of business model for the target technology into the concept of volatility in terms of stock price which we usually apply to in evaluation of a firm's value, we need to consider 'the continuity of stock price (relatively minor change)' and 'positive condition'. Thus, as discussed in a lot of literature, it is necessary to investigate the relationship among volatility, underlying asset values, and cost of commercialization in the Black-Scholes model for estimating the technology value based on real options. This study is expected to provide more elaborated real options model, by mathematically deriving whether the ratio of the present value of the underlying asset to the present value of the commercialization cost, which reflects the uncertainty in the option pricing model (OPM), is divided into the "no action taken" (NAT) area under certain threshold conditions or not, and also presenting the estimation logic for option values according to the observation variables (or input values).

The Study on the Risk Predict Method and Government Funds Supporting for Small and Medium Enterprises (로짓분석을 통한 중소기업 정책자금 지원의 위험예측력에 대한 연구)

  • Choi, Chang-Yeoul;Ham, Hyung-Bum
    • Management & Information Systems Review
    • /
    • v.28 no.3
    • /
    • pp.1-23
    • /
    • 2009
  • Prior bankruptcy studies have established that bankrupt firm's pre-filing financial ratios are different from those of healthy firms or of randomly selected going concerns. However, they may not be sufficiently different from the financial ratios of other firms in financial distress to allow the development of a ratio-based model that predicts bankruptcy with reasonable accuracy. As the result, in the multiple discriminant model, independent variables divided firms into bankrupt firms and healthy firms are retained earnings to total asset, receivable turnover, net income to sales, financial expenses, inventory turnover, owner's equity to total asset, cash flow to current liability, and current asset to current liability. Moreover four variables Retained earnings to total asset, net income to sales, total asset turnover, owner's equity to total asset indicate that these valuables classify bankrupt firms and distress firms. On the other hand, Owner's Equity to borrowed capital, Ordinary income to Net Sales, Operating Income to Total Asset, Total Asset Turnover and Inventory Turnover are selected to predict bankruptcy possibility in the Logistic regression model.

  • PDF

A Study on the Change of Hire Payment Method to Reduce the FFA Basis Risk (FFA 베이시스위험 축소를 위한 용선료 지급기준 변경의 타당성 검토)

  • Lee, Seung-Cheol;Yun, Heesung
    • Journal of Navigation and Port Research
    • /
    • v.46 no.4
    • /
    • pp.359-366
    • /
    • 2022
  • While the Forward Freight Agreement (FFA) has emerged as an effective hedging tool since early 1990, the basis risk and cash flow distortions have been addressed as obstacles to the active use of FFAs. This research analyses the basis risk of FFAs and provides a feasible suggestion to reduce it. Basis risk is divided into timing basis, route basis, size basis, and low liquidity basis. The timing basis is defined as the difference between the physical hire, fixed on the specific contract date and the FFA settlement price, calculated by averaging spot rates for a certain period. Timing basis is considered the worst in eroding the effectiveness of FFAs. This paper suggests a change of hire payment criterion from contract date to 15-day moving average, as a means of mitigating the basis risk, and analyzed the effectiveness through historical simulation. The result revealed that the change is effective in mitigating the timing basis. This study delivers a meaningful implication to shipping practice in that the change of hire payment criterion mitigates the basis risk and eventually activates the use of FFAs in the future.

The Influential Factor Analysis in the Technology Valuation of The Agri-Food Industry and the Simulation-Based Valuation Analysis (농식품 산업의 기술평가 영향요인 분석과 시뮬레이션 기반 기술평가 비교)

  • Kim, Sang-gook;Jun, Seung-pyo;Park, Hyun-woo
    • Journal of Technology Innovation
    • /
    • v.24 no.4
    • /
    • pp.277-307
    • /
    • 2016
  • Since 2011, DCF(Discounted Cash Flow) method has been used initiatively for valuating R&D technology assets in the agricultural food industry and recently technology valuation based on royalties comparison among technology transfer transactions has been also carried out in parallel when evaluating the technology assets such as new seed development technologies. Since the DCF method which has been known until now has many input variables to be estimated, sophisticated estimation has been demanded at the time of technology valuation. In addition, considering more similar trading cases when applying sales transaction comparison or industry norm method based on information of technology transfer royalty, it is an important issue that should be taken into account in the same way in the Agri-Food industry. The main input variables used for technology valuation in the Agri-Food industry are life cycle of technology asset, the financial information related to the Agri-Food industry, discount rate, and technology contribution rate. The latest infrastructure building and data updating related to technology valuation has been carried out on a regular basis in the evaluation organization of the Agri-Food segment. This study verifies the key variables that give the most important impact on the results for the existing technology valuation in the Agri-Food industry and clarifies the difference between the existing valuation result and the outcome by referring the support information that is derived through the latest input information applied in DCF method. In addition, while presenting the scheme to complement fragment information which the latest input data just influence result of technology valuation, we tried to perform comparative analysis between the existing valuation results and the evaluated outcome after the latest of reference data for making a decision the input values to be estimated in DCF. To perform these analyzes, it was first selected the representative cases evaluated past in the Agri-Food industry, applied a sensitivity analysis for input variables based on these selected cases, and then executed a simulation analysis utilizing the key input variables derived from sensitivity analysis. The results of this study is to provide the information which there are the need for modernization of the data related to the input variables that are utilized during valuating technology assets in the Agri-Food sector and for building the infrastructure of the key input variables in DCF. Therefore it is expected to provide more fruitful information about the results of valuation.

The Case on Valuation of IT Enterprise (IT 기업의 가치평가 사례연구)

  • Lee, Jae-Il;Yang, Hae-Sul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.881-893
    • /
    • 2007
  • IT(Information Technology)-based industries have caused a recent digital revolution and the appearance of various types' information service, being largely expanded toward info-communication device company, info-communication service company, software company etc.. Therefore, the needs to evaluate the company value of IT business for M&A or liquidation are growing tremendously. Unlike other industries, however, IT industry has a short lift cycle and so it doesn't have not only a company value-evaluating model for general businesses but the objective one for IT companies yet. So, this thesis analyzes various value-evaluating technique and newly rising ROV. DCF, the change method of company's cash flow including tangible assets into future value, had been applied during the past industrialization economy era and has been persuasively applied to the present. However, the DCF valuation has no option but to make many mistakes because IT companies have more intangible assets than tangible assets. Accordingly, it is ROV, recognized as the new method of evaluating companies' various options normally and quantitatively, that is brought up recently. But the evaluation on the companies' various options is too subjective and theoretical up to now and due to the lack of objective ground and options, it's not possible to be applied to reality. In this thesis, it is found that ROV is more accurate than DCF, comparing DCF and ROV through four examples. As the options applied to ROV are excessively limited, we tried to develop ROV into a new method by deriving five invisible value factors within IT companies. Therefore, on this occasion, we should set up the basic valuation methods on IT companies and should research and develop an effective and various valuation methods suitable to each company like an internet-based company, a S/W developing enterprise, a network-related company among IT companies.

  • PDF

Bankruptcy prediction using an improved bagging ensemble (개선된 배깅 앙상블을 활용한 기업부도예측)

  • Min, Sung-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.121-139
    • /
    • 2014
  • Predicting corporate failure has been an important topic in accounting and finance. The costs associated with bankruptcy are high, so the accuracy of bankruptcy prediction is greatly important for financial institutions. Lots of researchers have dealt with the topic associated with bankruptcy prediction in the past three decades. The current research attempts to use ensemble models for improving the performance of bankruptcy prediction. Ensemble classification is to combine individually trained classifiers in order to gain more accurate prediction than individual models. Ensemble techniques are shown to be very useful for improving the generalization ability of the classifier. Bagging is the most commonly used methods for constructing ensemble classifiers. In bagging, the different training data subsets are randomly drawn with replacement from the original training dataset. Base classifiers are trained on the different bootstrap samples. Instance selection is to select critical instances while deleting and removing irrelevant and harmful instances from the original set. Instance selection and bagging are quite well known in data mining. However, few studies have dealt with the integration of instance selection and bagging. This study proposes an improved bagging ensemble based on instance selection using genetic algorithms (GA) for improving the performance of SVM. GA is an efficient optimization procedure based on the theory of natural selection and evolution. GA uses the idea of survival of the fittest by progressively accepting better solutions to the problems. GA searches by maintaining a population of solutions from which better solutions are created rather than making incremental changes to a single solution to the problem. The initial solution population is generated randomly and evolves into the next generation by genetic operators such as selection, crossover and mutation. The solutions coded by strings are evaluated by the fitness function. The proposed model consists of two phases: GA based Instance Selection and Instance based Bagging. In the first phase, GA is used to select optimal instance subset that is used as input data of bagging model. In this study, the chromosome is encoded as a form of binary string for the instance subset. In this phase, the population size was set to 100 while maximum number of generations was set to 150. We set the crossover rate and mutation rate to 0.7 and 0.1 respectively. We used the prediction accuracy of model as the fitness function of GA. SVM model is trained on training data set using the selected instance subset. The prediction accuracy of SVM model over test data set is used as fitness value in order to avoid overfitting. In the second phase, we used the optimal instance subset selected in the first phase as input data of bagging model. We used SVM model as base classifier for bagging ensemble. The majority voting scheme was used as a combining method in this study. This study applies the proposed model to the bankruptcy prediction problem using a real data set from Korean companies. The research data used in this study contains 1832 externally non-audited firms which filed for bankruptcy (916 cases) and non-bankruptcy (916 cases). Financial ratios categorized as stability, profitability, growth, activity and cash flow were investigated through literature review and basic statistical methods and we selected 8 financial ratios as the final input variables. We separated the whole data into three subsets as training, test and validation data set. In this study, we compared the proposed model with several comparative models including the simple individual SVM model, the simple bagging model and the instance selection based SVM model. The McNemar tests were used to examine whether the proposed model significantly outperforms the other models. The experimental results show that the proposed model outperforms the other models.

Valuation of Mining Investment Projects by the Real Option Approach - A Case Study of Uzbekistan's Copper Mining Industry - (실물옵션평가방법에 의한 광산투자의 가치평가 -우즈베키스탄 구리광산업의 사례연구를 중심으로-)

  • Makhkamov, Mumm Sh.;Kim, Dong-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1634-1647
    • /
    • 2007
  • "To invest or not to invest?" Most business leaders are frequently faced with this question on new and ongoing projects. The challenge lies in deciding what projects to choose, expand, contract, defer, or abandon. The project valuation tools used in this process are vital to making the right decisions. Traditional tools such as discounted cash flow (DCF)/net present value (NPV) assume a "fixed" path ahead, but real world projects face uncertainties, forcing us to change the path often. Comparing to other traditional valuation methods, the real options approach captures the flexibility inherent to investment decisions. The use of real options has gained wide acceptance among practitioners in a number of several industries during the last few decades. Even though the options are present in all types of business decisions, it is still not considered as a proper method of valuation in some industries. Mining has been comparably slow to adopt new valuation techniques over the years. The reason fur this is not entirely clear. One possible reason is the level and types of risks in mining. Not only are these risks high, but they are also more numerous and involve natural risks compared with other industries. That is why the purpose of this study is to deal with a more practical approach to project valuation, known as real options analysis in mining industry. This paper provides a case study approach to the copper mining industry using a real options analysis. It shows how companies can minimize investment risks, exercise flexibility in decision making and maximize returns.

  • PDF

A Study on Web-based Technology Valuation System (웹기반 지능형 기술가치평가 시스템에 관한 연구)

  • Sung, Tae-Eung;Jun, Seung-Pyo;Kim, Sang-Gook;Park, Hyun-Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.23-46
    • /
    • 2017
  • Although there have been cases of evaluating the value of specific companies or projects which have centralized on developed countries in North America and Europe from the early 2000s, the system and methodology for estimating the economic value of individual technologies or patents has been activated on and on. Of course, there exist several online systems that qualitatively evaluate the technology's grade or the patent rating of the technology to be evaluated, as in 'KTRS' of the KIBO and 'SMART 3.1' of the Korea Invention Promotion Association. However, a web-based technology valuation system, referred to as 'STAR-Value system' that calculates the quantitative values of the subject technology for various purposes such as business feasibility analysis, investment attraction, tax/litigation, etc., has been officially opened and recently spreading. In this study, we introduce the type of methodology and evaluation model, reference information supporting these theories, and how database associated are utilized, focusing various modules and frameworks embedded in STAR-Value system. In particular, there are six valuation methods, including the discounted cash flow method (DCF), which is a representative one based on the income approach that anticipates future economic income to be valued at present, and the relief-from-royalty method, which calculates the present value of royalties' where we consider the contribution of the subject technology towards the business value created as the royalty rate. We look at how models and related support information (technology life, corporate (business) financial information, discount rate, industrial technology factors, etc.) can be used and linked in a intelligent manner. Based on the classification of information such as International Patent Classification (IPC) or Korea Standard Industry Classification (KSIC) for technology to be evaluated, the STAR-Value system automatically returns meta data such as technology cycle time (TCT), sales growth rate and profitability data of similar company or industry sector, weighted average cost of capital (WACC), indices of industrial technology factors, etc., and apply adjustment factors to them, so that the result of technology value calculation has high reliability and objectivity. Furthermore, if the information on the potential market size of the target technology and the market share of the commercialization subject refers to data-driven information, or if the estimated value range of similar technologies by industry sector is provided from the evaluation cases which are already completed and accumulated in database, the STAR-Value is anticipated that it will enable to present highly accurate value range in real time by intelligently linking various support modules. Including the explanation of the various valuation models and relevant primary variables as presented in this paper, the STAR-Value system intends to utilize more systematically and in a data-driven way by supporting the optimal model selection guideline module, intelligent technology value range reasoning module, and similar company selection based market share prediction module, etc. In addition, the research on the development and intelligence of the web-based STAR-Value system is significant in that it widely spread the web-based system that can be used in the validation and application to practices of the theoretical feasibility of the technology valuation field, and it is expected that it could be utilized in various fields of technology commercialization.