• Title/Summary/Keyword: casein kinase I

Search Result 10, Processing Time 0.044 seconds

Casein Kinases I and 2α Phosphorylate Oryza Sativa Pseudo-Response Regulator 37 (OsPRR37) in Photoperiodic Flowering in Rice

  • Kwon, Choon-Tak;Koo, Bon-Hyuk;Kim, Dami;Yoo, Soo-Cheul;Paek, Nam-Chon
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.81-88
    • /
    • 2015
  • Flowering time (or heading date) is controlled by intrinsic genetic programs in response to environmental cues, such as photoperiod and temperature. Rice, a facultative short-day (SD) plant, flowers early in SD and late in long-day (LD) conditions. Casein kinases (CKs) generally act as positive regulators in many signaling pathways in plants. In rice, Heading date 6 (Hd6) and Hd16 encode $CK2{\alpha}$ and CKI, respectively, and mainly function to delay flowering time. Additionally, the major LD-dependent floral repressors Hd2/Oryza sativa Pseudo-Response Regulator 37 (OsPRR37;hereafter PRR37) and Ghd7 also confer strong photoperiod sensitivity. In floral induction, Hd16 acts upstream of Ghd7 and CKI interacts with and phosphorylates Ghd7. In addition, Hd6 and Hd16 also act upstream of Hd2. However, whether CKI and $CK2{\alpha}$ directly regulate the function of PRR37 remains unclear. Here, we use in vitro pull-down and in vivo bimolecular fluorescence complementation assays to show that CKI and $CK2{\alpha}$ interact with PRR37. We further use in vitro kinase assays to show that CKI and $CK2{\alpha}$ phosphorylate different regions of PRR37. Our results indicate that direct posttranslational modification of PRR37 mediates the genetic interactions between these two protein kinases and PRR37. The significance of CK-mediated phosphorylation for PRR37 and Ghd7 function is discussed.

Roles of Budding Yeast Hrr25 in Recombination and Sporulation

  • Lee, Min-Su;Joo, Jeong Hwan;Kim, Keunpil
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1198-1203
    • /
    • 2017
  • Hrr25, a casein kinase $1{\delta}/{\varepsilon}$ homolog in budding yeast, is essential to set up mono-orientation of sister kinetochores during meiosis. Hrr25 kinase activity coordinates sister chromatid cohesion via cohesin phosphorylation. Here, we investigated the prophase role of Hrr25 using the auxin-inducible degron system and by ectopic expression of Hrr25 during yeast meiosis. Hrr25 mediates nuclear division in meiosis I but does not affect DNA replication. We also found that initiation of meiotic double-strand breaks as well as joint molecule formation were normal in HRR25-deficient cells. Thus, Hrr25 is essential for termination of meiotic division but not homologous recombination.

Cadmium-Induced Gene Expression is Regulated by MTF-1, a Key Metal- Responsive Transcription Factor

  • Gupta, Ronojoy-Sen;Ahnn, Joohong
    • Animal cells and systems
    • /
    • v.7 no.3
    • /
    • pp.173-186
    • /
    • 2003
  • The transition metal cadmium is a serious occupational and environmental toxin. To inhibit cadmium-induced damage, cells respond by increasing the expression of genes that encode stress-responsive proteins. The metal-regulatory transcription factor 1 (MTF-1) is a key regulator of heavy-metal induced transcription of metallothionein-I and II and other genes in mammals and other metazoans. Transcriptional activation of genes by MTF-1 is mediated through binding to metal-responsive elements in the target gene promoters. Phosphorylation of MTF-1 plays a critical role in the cadmium-inducible transcriptional activation of metallothionein and other responses. Studies using inhibitors indicate that multiple kinases and signal transduction cascades, including those mediated by protein kinase C, tyrosine kinase and casein kinase II, are essential for cadmium-mediated transcriptional activation. In addition, calcium signaling is also involved in regulating metal-activated transcription. In several species, cadmium induces heat shock genes. Recently much progress has been made in elucidating the cellular machinery that regulates this metal-inducible gene expression. This review summarizes these recent advances in understanding the role of some known cadmium-responsive genes and the molecular mechanisms that activate metal-responsive transcription factor, MTF-1.

D-Methionine and 2-hydroxy-4-methylthiobutanoic acid i alter beta-casein, proteins and metabolites linked in milk protein synthesis in bovine mammary epithelial cells

  • Seung-Woo, Jeon;Jay Ronel V., Conejos;Jae-Sung, Lee;Sang-Hoon, Keum;Hong-Gu, Lee
    • Journal of Animal Science and Technology
    • /
    • v.64 no.3
    • /
    • pp.481-499
    • /
    • 2022
  • This study aims to determine the effects of D-methionine (D-Met) isomer and the methionine precursor 2-hydroxy-4-methylthiobutanoic acid i (HMBi) supplementation on milk protein synthesis on immortalized bovine mammary epithelial cell (MAC-T). MAC-T cells were seeded using 10-cm dishes and cultured in Dulbecco's modified Eagle's medium/F12 (DMEM/F12) basic medium. The basic medium of DMEM/F12 was replaced with the lactogenic DMEM/ F12 differentiation medium when 90% of MAC-T cells reached confluency. The best dosage at 0.6 mM of D-Met and HMBi and incubation time at 72 h were used uniformly for all treatments. Each treatment was replicated six times wherein treatments were randomly assigned in a 6-well plate. Cell, medium, and total protein were determined using a bicinchoninic acid protein assay kit. Genes, proteomics and metabolomics analyses were also done to determine the mechanism of the milk protein synthesis pathway. Data were analyzed by two-way analysis of variance (ANOVA) with supplement type and plate as fixed effects. The least significant difference test was used to evaluate the differences among treatments. The HMBi treatment group had the highest beta-casein and S6 kinase beta-1 (S6K1) mRNA gene expression levels. HMBi and D-Met treatments have higher gene expressions compared to the control group. In terms of medium protein content, HMBi had a higher medium protein quantity than the control although not significantly different from the D-Met group. HMBi supplementation stimulated the production of eukaryotic translation initiation factor 3 subunit protein essential for protein translation initiation resulting in higher medium protein synthesis in the HMBi group than in the control group. The protein pathway analysis results showed that the D-Met group stimulated fructose-galactose metabolism, glycolysis pathway, phosphoinositide 3 kinase, and pyruvate metabolism. The HMBi group stimulated the pentose phosphate and glycolysis pathways. Metabolite analysis revealed that the D-Met treatment group increased seven metabolites and decreased uridine monophosphate (UMP) production. HMBi supplementation increased the production of three metabolites and decreased UMP and N-acetyl-L-glutamate production. Taken together, D-Met and HMBi supplementation are effective in stimulating milk protein synthesis in MAC-T cells by genes, proteins, and metabolites stimulation linked to milk protein synthesis.

Molecular Cloning of Mutant cDNA of PU.1 Gene (PU.1 유전자(cDNA)의 인위적 변이체 클로닝)

  • 류종석;유시현
    • KSBB Journal
    • /
    • v.10 no.5
    • /
    • pp.499-509
    • /
    • 1995
  • PU.1, a tissue-specific transcription activator, binds to a purine-rich sequence(5'-GAGGAA-3') called PU box. The PU.1 cDNA consists of an open reading frame of 816 nucleotides coding for 272 amino acids. The amino terminal end is highly acidic, while the carboxyl terminal end is highly basic. Transcriptional activation domain is located at the amino terminal end, while DNA binding domain is located at the carboxyl terminal end. Activation of PU.1 transcription factor is supposed to be accomplished by the phosphorylation of serine residue(s). There exist 22 serines in the PU.1. Five(the 41, 45, 132$.$133, and 148th) of the serines(plausible phosphorylation site by casein kinase II), are the primary targets of interest in elucidating the molecular mechanism(s) of the action of the PU.1 gene. In this study, PU.1 cDNA coding for the five serine residues(41th AGC, 45th AGC, 132$.$133th AGC$.$TCA, and 148th TCT), was mutated to alanine codon(41th GCC, 45th GCC, 132$.$133th GCC$.$GCA, and 1481h GCT), respectively, by Splicing-Overlapping-Extension(SOE) using Polymerase Chain Reaction(PCR). And each mutated cDNA fragments was ligated into pBluescript KS+ digested with HindIII and Xba I, to generate mutant clones named pKKS41A, pRKS45A, pMKS132$.$133A, and pMKS148A. The clones will be informative to study the "Structure and Function" of the immu-nologically important gene, PU.1.

  • PDF

Plasma Peptidome as a Source of Biomarkers for Diagnosis of Cholangiocarcinoma

  • Kotawong, Kanawut;Thitapakorn, Veerachai;Roytrakul, Sittiruk;Phaonakrop, Narumon;Viyanant, Vithoon;Na-Bangchang, Kesara
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1163-1168
    • /
    • 2016
  • Cholangiocarcinoma (CCA) is the bile duct cancer which constitutes one of the important public health problems in Thailand with high mortality rate, especially in the Opisthorchis viverrini (a parasite risk factor for CCA) endemic area of the northeastern region of the country. This study aimed to identify potential biomarkers from the plasma peptidome by CCA patients. Peptides were isolated using 10 kDa cut-off filter column and the flow-through was then used as a peptidome for LC-MS/MS analysis. A total of 209 peptides were obtained. Among these, 15 peptides were concerned with signaling pathways and 12 related to metabolic, regulatory, and biosynthesis of secondary metabolite pathways. Five exclusive peptides were identified as potential biomarkers, i.e. ETS domain-containing transcription factor ERF (P50548), KIAA0220 (Q92617), phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoform isoform 1 (P42338), LP2209 (Q6XYC0), and casein kinase II subunit alpha (P19784). Three of these biomarkers are signaling related molecules. A combination of these biomarkers for CCA diagnosis is proposed.

Effect of NUCKS-1 Overexpression on Cytokine Profiling in Obese Women with Breast Cancer

  • Soliman, Nema Ali;Zineldeen, Doaa Hussein;El-Khadrawy, Osama Helmy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.837-845
    • /
    • 2014
  • Background: Overweight and obesity are recognized as major drivers of cancers including breast cancer. Several cytokines, including interleukin-6 (IL-6), IL-10 and lipocalin 2 (LCN2), as well as dysregulated cell cycle proteins are implicated in breast carcinogenesis. The nuclear, casein kinase and cyclin-dependent kinase substrate-1 (NUCKS-1), is a nuclear DNA-binding protein that has been implicated in several human cancers, including breast cancer. Objectives: The present study was conducted to evaluate NUCKS-1 mRNA expression in breast tissue from obese patients with and without breast cancer and lean controls. NUCKS-1 expression was correlated to cytokine profiles as prognostic and monitoring tools for breast cancer, providing a molecular basis for a causal link between obesity and risk. Materials and Methods: This study included 39 females with breast cancer (G III) that was furtherly subdivided into two subgroups according to cancer grading (G IIIa and G IIIb) and 10 control obese females (G II) in addition to 10 age-matched healthy lean controls (G I). NUCKS-1 expression was studied in breast tissue biopsies by means of real-time PCR (RT-PCR). Serum cytokine profiles were determined by immunoassay. Lipid profiles and glycemic status as well as anthropometric measures were also recorded for all participants. Results: IL-6, IL-12 and LCN2 were significantly higher in control obese and breast cancer group than their relevant lean controls (p<0.05), while NUCKS-1 mRNA expression was significantly higher in the breast cancer group compared to the other groups (p<0.05). Significant higher levels of IL-6, IL-12, and LCN2 as well as NUCKS-1 mRNA levels were reported in G IIIb than G IIIa, and positively correlated with obesity markers in all obese patients. Conclusions: Evaluation of cytokine levels as well as related gene expression may provide a new tool for understanding interactions for three axes of carcinogenesis, innate immunity, inflammation and cell cycling, and hope for new strategies of management.

A Natural L-Arginine Analog, L-Canavanine-Induced Apoptosis is Suppressed by Protein Tyrosine Kinase p56lck in Human Acute Leukemia Jurkat T Cells (인체 급성백혈병 Jurkat T 세포에 있어서 L-canavanine에 의해 유도되는 세포자살기전에 미치는 단백질 티로신 키나아제 p56lck의 저해 효과)

  • Park, Hae-Sun;Jun, Do-Youn;Woo, Hyun-Ju;Rue, Seok-Woo;Kim, Sang-Kook;Kim, Kyung-Min;Park, Wan;Moon, Byung-Jo;Kim, Young-Ho
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1529-1537
    • /
    • 2009
  • To elucidate further the antitumor effects of a natural L-arginine analogue, L-canavanine, the mechanism underlying apoptogenic activity of L-canavanine and its modulation by protein tyrosine kinase $p56^{lck}$ was investigated in human Jurkat T cells. When the cells were treated with 1.25 to 2.5 mM L-canavanine for 36 h, several apoptotic events including mitochondrial membrane potential (${\Delta\Psi}m$) loss, activation of caspase-9, -3, -8, and -7, poly (ADP-ribose) polymerase (PARP) degradation, and DNA fragmentation were induced without alteration in the levels of Fas or FasL. These apoptotic changes were more significant in $p56^{lck}$-deficient Jurkat clone JCaM1.6 than in $p56^{lck}$-positive Jurkat clone E6.1. The L-canavanine-induced apoptosis observed in $p56^{lck}$-deficient JCaM1.6 cells was significantly reduced by introducing $p56^{lck}$ gene into JCaM1.6 cells by stable transfection. Treatment of JCaM1.6/lck cells with L-canavanine caused a transient 1.6-fold increase in the kinase activity of $p56^{lck}$. Both FADD-positive wild-type Jurkat T cell clone A3 and FADD-deficient Jurkat T cell clone I2.1 exhibited a similar susceptibility to the cytotoxicity of L-canavanine, excluding involvement of Fas/FasL system in triggering L-canavanine-induced apoptosis. The L-canavanine-induced apoptotic sub-$G_1$ peak and activation of caspase-3, -8, and -7 were abrogated by pan-caspase inhibitor (z-VAD-fmk), whereas L-canavanine-induced activation of caspase-9 was not affected. These results demonstrated that L-canavanine caused apoptosis of Jurkat T cells via the loss of ${\Delta\Psi}m$, and the activation of caspase-9, -3, -8, and -7, leading to PARP degradation, and that the $p56^{lck}$ kinase attenuated the ${\Delta\Psi}m$ loss and activation of caspases, and thus contributed as a negative regulator to L-canavanine-induced apoptosis.