DOI QR코드

DOI QR Code

Casein Kinases I and 2α Phosphorylate Oryza Sativa Pseudo-Response Regulator 37 (OsPRR37) in Photoperiodic Flowering in Rice

  • Kwon, Choon-Tak (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Koo, Bon-Hyuk (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Dami (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Yoo, Soo-Cheul (Department of Bioresource and Rural System of Engineering, Hankyong National University) ;
  • Paek, Nam-Chon (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University)
  • 투고 : 2014.09.17
  • 심사 : 2014.10.17
  • 발행 : 2015.01.31

초록

Flowering time (or heading date) is controlled by intrinsic genetic programs in response to environmental cues, such as photoperiod and temperature. Rice, a facultative short-day (SD) plant, flowers early in SD and late in long-day (LD) conditions. Casein kinases (CKs) generally act as positive regulators in many signaling pathways in plants. In rice, Heading date 6 (Hd6) and Hd16 encode $CK2{\alpha}$ and CKI, respectively, and mainly function to delay flowering time. Additionally, the major LD-dependent floral repressors Hd2/Oryza sativa Pseudo-Response Regulator 37 (OsPRR37;hereafter PRR37) and Ghd7 also confer strong photoperiod sensitivity. In floral induction, Hd16 acts upstream of Ghd7 and CKI interacts with and phosphorylates Ghd7. In addition, Hd6 and Hd16 also act upstream of Hd2. However, whether CKI and $CK2{\alpha}$ directly regulate the function of PRR37 remains unclear. Here, we use in vitro pull-down and in vivo bimolecular fluorescence complementation assays to show that CKI and $CK2{\alpha}$ interact with PRR37. We further use in vitro kinase assays to show that CKI and $CK2{\alpha}$ phosphorylate different regions of PRR37. Our results indicate that direct posttranslational modification of PRR37 mediates the genetic interactions between these two protein kinases and PRR37. The significance of CK-mediated phosphorylation for PRR37 and Ghd7 function is discussed.

키워드

참고문헌

  1. Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., and Araki, T. (2005). FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052-1056. https://doi.org/10.1126/science.1115983
  2. Alabadi, D., Oyama, T., Yanovsky, M.J., Harmon, F.G., Mas, P., and Kay, S.A. (2001). Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293, 880-883. https://doi.org/10.1126/science.1061320
  3. Beales, J., Turner, A., Griffiths, S., Snape, J.W., and Laurie, D.A. (2007). A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor. Appl. Genet. 115, 721-733. https://doi.org/10.1007/s00122-007-0603-4
  4. Citovsky, V., Lee, L.Y., Vyas, S., Glick, E., Chen, M.H., Vainstein, A., Gafni, Y., Gelvin, S.B., and Tzfira, T. (2006). Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. J. Mol. Biol. 362, 1120-1131. https://doi.org/10.1016/j.jmb.2006.08.017
  5. Corbesier, L., Vincent, C., Jang, S.H., Fornara, F., Fan, Q.Z., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., et al. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316, 1030-1033. https://doi.org/10.1126/science.1141752
  6. Dai, C., and Xue, H.W. (2010). Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling. EMBO J. 29, 1916-1927. https://doi.org/10.1038/emboj.2010.75
  7. Daniel, X., Sugano, S., and Tobin, E.M. (2004). CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis. Proc. Natl. Acad. Sci. USA 101, 3292-3297. https://doi.org/10.1073/pnas.0400163101
  8. Doi, K., Izawa, T., Fuse, T., Yamanouchi, U., Kubo, T., Shimatani, Z., Yano, M., and Yoshimura, A. (2004). Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-Iike gene expression independently of Hd1. Gene Dev. 18, 926-936. https://doi.org/10.1101/gad.1189604
  9. Farre, E.M., and Kay, S.A. (2007). PRR7 protein levels are regulated by light and the circadian clock in Arabidopsis. Plant J. 52, 548-560. https://doi.org/10.1111/j.1365-313X.2007.03258.x
  10. Fujino, K., and Sekiguchi, H. (2005). Mapping of QTLs conferring extremely early heading in rice (Oryza sativa L.). Theor. Appl. Genet. 111, 393-398. https://doi.org/10.1007/s00122-005-2035-3
  11. Fujino, K., Yamanouchi, U., and Yano, M. (2013). Roles of the Hd5 gene controlling heading date for adaptation to the northern limits of rice cultivation. Theor. Appl. Genet. 126, 611-618. https://doi.org/10.1007/s00122-012-2005-5
  12. Fujiwara, S., Wang, L., Han, L.Q., Suh, S.S., Salome, P.A., McClung, C.R., and Somers, D.E. (2008). Post-translational regulation of the Arabidopsis circadian clock through selective proteolysis and phosphorylation of pseudo-response regulator proteins. J. Biol. Chem. 283, 23073-23083. https://doi.org/10.1074/jbc.M803471200
  13. Gao, H., Zheng, X.M., Fei, G.L., Chen, J., Jin, M.N., Ren, Y.L., Wu, W.X., Zhou, K.N., Sheng, P.K., Zhou, F., et al. (2013). Ehd4 Encodes a Novel and Oryza-Genus-Specific Regulator of Photoperiodic Flowering in Rice. PLoS Genet. 9, e1003281 https://doi.org/10.1371/journal.pgen.1003281
  14. Hayama, R., Yokoi, S., Tamaki, S., Yano, M., and Shimamoto, K. (2003). Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422, 719-722. https://doi.org/10.1038/nature01549
  15. Herrero, E., Kolmos, E., Bujdoso, N., Yuan, Y., Wang, M.M., Berns, M.C., Uhlworm, H., Coupland, G., Saini, R., Jaskolski, M., et al. (2012). EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock. Plant Cell 24, 428-443. https://doi.org/10.1105/tpc.111.093807
  16. Hori, K., Ogiso-Tanaka, E., Matsubara, K., Yamanouchi, U., Ebana, K., and Yano, M. (2013). Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response. Plant J. 76, 36-46.
  17. Huq, E., Tepperman, J.M., and Quail, P.H. (2000). GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 97, 9789-9794. https://doi.org/10.1073/pnas.170283997
  18. Ito, S., Kawamura, H., Niwa, Y., Nakamichi, N., Yamashino, T., and Mizuno, T. (2009). A genetic study of the Arabidopsis circadian clock with reference to the TIMING OF CAB EXPRESSION 1 (TOC1) Gene. Plant Cell Physiol. 50, 290-303. https://doi.org/10.1093/pcp/pcn198
  19. Izawa, T. (2007). Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. J. Exp. Bot. 58, 3091-3097. https://doi.org/10.1093/jxb/erm159
  20. Kaczorowski, K.A., and Quail, P.H. (2003). Arabidopsis PSEUDORESPONSE REGULATOR7 is a signaling intermediate in phytochrome-regulated seedling deetiolation and phasing of the circadian clock. Plant Cell 15, 2654-2665. https://doi.org/10.1105/tpc.015065
  21. Kang, C.H., Moon, B.C., Park, H.C., Koo, S.C., Chi, Y.H., Cheong, Y.H., Yoon, B.D., Lee, S.Y., and Kim, C.Y. (2013). Rice small C2-domain proteins are phosphorylated by calcium-dependent protein kinase. Mol. Cells 35, 381-387. https://doi.org/10.1007/s10059-013-2185-0
  22. Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M.J., and Weigel, D. (1999). Activation tagging of the floral inducer FT. Science 286, 1962-1965. https://doi.org/10.1126/science.286.5446.1962
  23. Kim, S.L., Choi, M., Jung, K.H., and An, G. (2013). Analysis of the early-flowering mechanisms and generation of T-DNA tagging lines in Kitaake, a model rice cultivar. J. Exp. Bot. 64, 4169-4182. https://doi.org/10.1093/jxb/ert226
  24. Knippschild, U., Gocht, A., Wolff, S., Huber, N., Lohler, J., and Stoter, M. (2005). The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell. Signal. 17, 675-689. https://doi.org/10.1016/j.cellsig.2004.12.011
  25. Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M., and Araki, T. (1999). A pair of related genes with antagonistic roles in mediating flowering signals. Science 286, 1960-1962. https://doi.org/10.1126/science.286.5446.1960
  26. Komiya, R., Ikegami, A., Tamaki, S., Yokoi, S., and Shimamoto, K. (2008). Hd3a and RFT1 are essential for flowering in rice. Development 135, 767-774. https://doi.org/10.1242/dev.008631
  27. Komiya, R., Yokoi, S., and Shimamoto, K. (2009). A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136, 3443-3450. https://doi.org/10.1242/dev.040170
  28. Koo, B.H., Yoo, S.C., Park, J.W., Kwon, C.T., Lee, B.D., An, G., Zhang, Z.Y., Li, J.J., Li, Z.C., and Paek, N.C. (2013). Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Mol. Plant 6, 1877-1888. https://doi.org/10.1093/mp/sst088
  29. Kwon, C.T., Yoo, S.C., Koo, B.H., Cho, S.H., Park, J.W., Zhang, Z.Y., Li, J.J., Li, Z.C., and Paek, N.C. (2014). Natural variation in early flowering1 contributes to early flowering in japonica rice under long days. Plant Cell Environ. 37, 101-112. https://doi.org/10.1111/pce.12134
  30. Lin, H.X., Yamamoto, T., Sasaki, T., and Yano, M. (2000). Characterization and detection of epistatic interactions of 3 QTLs, Hd1, Hd2, and Hd3,controlling heading date in rice using nearly isogenic lines. Theor. Appl. Genet. 101, 1021-1028. https://doi.org/10.1007/s001220051576
  31. Lu, S.X., Liu, H., Knowles, S.M., Li, J., Ma, L., Tobin, E.M., and Lin, C. (2011). A role for protein kinase casein kinase2 alphasubunits in the Arabidopsis circadian clock. Plant Physiol. 157, 1537-1545. https://doi.org/10.1104/pp.111.179846
  32. Matsubara, K., Kono, I., Hori, K., Nonoue, Y., Ono, N., Shomura, A., Mizubayashi, T., Yamamoto, S., Yamanouchi, U., Shirasawa, K., et al. (2008a). Novel QTLs for photoperiodic flowering revealed by using reciprocal backcross inbred lines from crosses between japonica rice cultivars. Theor. Appl. Genet. 117, 935-945. https://doi.org/10.1007/s00122-008-0833-0
  33. Matsubara, K., Yamanouchi, U., Wang, Z.X., Minobe, Y., Izawa, T., and Yano, M. (2008b). Ehd2, a rice ortholog of the maize INDETERMINATE1 gene, promotes flowering by up-regulating Ehd1. Plant Physiol. 148, 1425-1435. https://doi.org/10.1104/pp.108.125542
  34. Matsubara, K., Yamanouchi, U., Nonoue, Y., Sugimoto, K., Wang, Z.X., Minobe, Y., and Yano, M. (2011). Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering. Plant J. 66, 603-612. https://doi.org/10.1111/j.1365-313X.2011.04517.x
  35. Matsubara, K., Ogiso-Tanaka, E., Hori, K., Ebana, K., Ando, T., and Yano, M. (2012). Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant Cell Physiol. 53, 709-716. https://doi.org/10.1093/pcp/pcs028
  36. Matsushika, A., Makino, S., Kojima, M., and Mizuno, T. (2000). Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: Insight into the plant circadian clock. Plant Cell Physiol. 41, 1002-1012. https://doi.org/10.1093/pcp/pcd043
  37. Mulekar, J.J., and Huq, E. (2014). Expanding roles of protein kinase CK2 in regulating plant growth and development. J. Exp. Bot. 65, 2883-2893 https://doi.org/10.1093/jxb/ert401
  38. Murakami, M., Matsushika, A., Ashikari, M., Yamashino, T., and Mizuno, T. (2005). Circadian-associated rice pseudo response regulators (OsPRRs): Insight into the control of flowering time. Biosci. Biotech. Biochem. 69, 410-414. https://doi.org/10.1271/bbb.69.410
  39. Murakami, M., Tago, Y., Yamashino, T., and Mizuno, T. (2007). Characterization of the rice circadian clock-associated pseudoresponse regulators in Arabidopsis thaliana. Biosci. Biotech. Biochem. 71, 1107-1110. https://doi.org/10.1271/bbb.70048
  40. Murphy, R.L., Klein, R.R., Morishige, D.T., Brady, J.A., Rooney, W.L., Miller, F.R., Dugas, D.V., Klein, P.E., and Mullet, J.E. (2011). Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc. Natl. Acad. Sci. USA 108, 16469-16474. https://doi.org/10.1073/pnas.1106212108
  41. Nakamichi, N., Kita, M., Ito, S., Yamashino, T., and Mizuno, T. (2005). PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol. 46, 686-698. https://doi.org/10.1093/pcp/pci086
  42. Nakamichi, N., Kita, M., Niinuma, K., Ito, S., Yamashino, T., Mizoguchi, T., and Mizuno, T. (2007). Arabidopsis clockassociated pseudo-response regulators PRR9, PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS-dependent photoperiodic pathway. Plant Cell Physiol. 48, 822-832. https://doi.org/10.1093/pcp/pcm056
  43. Nonoue, Y., Fujino, K., Hirayama, Y., Yamanouchi, U., Lin, S.Y., and Yano, M. (2008). Detection of quantitative trait loci controlling extremely early heading in rice. Theor. Appl. Genet. 116, 715-722. https://doi.org/10.1007/s00122-007-0704-0
  44. Nusinow, D.A., Helfer, A., Hamilton, E.E., King, J.J., Imaizumi, T., Schultz, T.F., Farre, E.M., and Kay, S.A. (2011). The ELF4- ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475, 398-U161. https://doi.org/10.1038/nature10182
  45. Ogiso, E., Takahashi, Y., Sasaki, T., Yano, M., and Izawa, T. (2010). The role of Casein Kinase II in Flowering Time Regulation Has Diversified during Evolution. Plant Physiol. 152, 808-820. https://doi.org/10.1104/pp.109.148908
  46. Park, D.H., Somers, D.E., Kim, Y.S., Choy, Y.H., Lim, H.K., Soh, M.S., Kim, H.J., Kay, S.A., and Nam, H.G. (1999). Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285, 1579-1582. https://doi.org/10.1126/science.285.5433.1579
  47. Park, S.J., Kim, S.L., Lee, S., Je, B.I., Piao, H.L., Park, S.H., Kim, C.M., Ryu, C.H., Park, S.H., Xuan, Y.H., et al. (2008). Rice indeterminate 1 (OsId1) is necessary for the expression of Ehd1 (Early heading date 1) regardless of photoperiod. Plant J. 56, 1018-1029. https://doi.org/10.1111/j.1365-313X.2008.03667.x
  48. Portoles, S., and Mas, P. (2010). The functional interplay between protein kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis. PLoS Genet. 6, e1001201 https://doi.org/10.1371/journal.pgen.1001201
  49. Saito, H., Ogiso-Tanaka, E., Okumoto, Y., Yoshitake, Y., Izumi, H., Yokoo, T., Matsubara, K., Hori, K., Yano, M., Inoue, H., et al. (2012). Ef7 encodes an ELF3-like protein and promotes rice flowering by negatively regulating the floral repressor gene Ghd7 under both short- and long-day conditions. Plant Cell Physiol. 53, 717-728. https://doi.org/10.1093/pcp/pcs029
  50. Salome, P.A., and McClung, C.R. (2005). PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. Plant Cell 17, 791-803. https://doi.org/10.1105/tpc.104.029504
  51. Sawa, M., Nusinow, D.A., Kay, S.A., and Imaizumi, T. (2007). FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318, 261-265. https://doi.org/10.1126/science.1146994
  52. Shibaya, T., Nonoue, Y., Ono, N., Yamanouchi, U., Hori, K., and Yano, M. (2011). Genetic interactions involved in the inhibition of heading by heading date QTL, Hd2 in rice under long-day conditions. Theor. Appl. Genet. 123, 1133-1143. https://doi.org/10.1007/s00122-011-1654-0
  53. Song, Y.H., Smith, R.W., To, B.J., Millar, A.J., and Imaizumi, T. (2012). FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science 336, 1045-1049. https://doi.org/10.1126/science.1219644
  54. Sugano, S., Andronis, C., Green, R.M., Wang, Z.Y., and Tobin, E.M. (1998). Protein kinase CK2 interacts with and phosphorylates the Arabidopsis circadian clock-associated 1 protein. Proc. Natl. Acad. Sci. USA 95, 11020-11025. https://doi.org/10.1073/pnas.95.18.11020
  55. Takahashi, Y., Shomura, A., Sasaki, T., and Yano, M. (2001). Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc. Natl. Acad. Sci. USA 98, 7922-7927. https://doi.org/10.1073/pnas.111136798
  56. Tan, S.T., Dai, C., Liu, H.T., and Xue, H.W. (2013). Arabidopsis casein kinase1 proteins CK1.3 and CK1.4 phosphorylate cryptochrome2 to regulate blue light signaling. Plant Cell 25, 2618-2632. https://doi.org/10.1105/tpc.113.114322
  57. Taoka, K., Ohki, I., Tsuji, H., Furuita, K., Hayashi, K., Yanase, T., Yamaguchi, M., Nakashima, C., Purwestri, Y.A., Tamaki, S., et al. (2011). 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476, 332-U397. https://doi.org/10.1038/nature10272
  58. Tsuji, H., Tamaki, S., Komiya, R., and Shimamoto, K. (2008). Florigen and the photoperiodic control of flowering in rice. Rice 1, 25-35. https://doi.org/10.1007/s12284-008-9005-8
  59. Turner, A., Beales, J., Faure, S., Dunford, R.P., and Laurie, D.A. (2005). The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310, 1031-1034. https://doi.org/10.1126/science.1117619
  60. Wang, L., Fujiwara, S., and Somers, D.E. (2010). PRR5 regulates phosphorylation, nuclear import and subnuclear localization of TOC1 in the Arabidopsis circadian clock. EMBO J. 29, 1903-1915. https://doi.org/10.1038/emboj.2010.76
  61. Wei, X.J., Jiang, L., Xu, J.F., Zhang, W.W., Lu, G.W., Zhang, Y.S., and Wan, J.M. (2008). Genetic analyses of heading date of Japonica rice cultivars from Northeast China. Field. Crop. Res. 107, 147-154. https://doi.org/10.1016/j.fcr.2008.01.008
  62. Wei, X.J., Xu, J.F., Guo, H.N., Jiang, L., Chen, S.H., Yu, C.Y., Zhou, Z.L., Hu, P.S., Zhai, H.Q., and Wan, J.M. (2010). DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol. 153, 1747-1758. https://doi.org/10.1104/pp.110.156943
  63. Wu, C.Y., You, C.J., Li, C.S., Long, T., Chen, G.X., Byrne, M.E., and Zhang, Q.F. (2008). RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc. Natl. Acad. Sci. USA 105, 12915-12920. https://doi.org/10.1073/pnas.0806019105
  64. Wu, W.X., Zheng, X.M., Lu, G.W., Zhong, Z.Z., Gao, H., Chen, L.P., Wu, C.Y., Wang, H.J., Wang, Q., Zhou, K.N., et al. (2013). Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proc. Natl. Acad. Sci. USA 110, 2775-2780. https://doi.org/10.1073/pnas.1213962110
  65. Xue, W.Y., Xing, Y.Z., Weng, X.Y., Zhao, Y., Tang, W.J., Wang, L., Zhou, H.J., Yu, S.B., Xu, C.G., Li, X.H., et al. (2008). Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 40, 761-767. https://doi.org/10.1038/ng.143
  66. Yamamoto, T., Lin, H., Sasaki, T., and Yano, M. (2000). Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics 154, 885-891.
  67. Yamamoto, Y., Sato, E., Shimizu, T., Nakamich, N., Sato, S., Kato, T., Tabata, S., Nagatani, A., Yamashino, T., and Mizuno, T. (2003). Comparative genetic studies on the APRR5 and APRR7 genes belonging to the APRR1/TOC1 quintet implicated in circadian rhythm, control of flowering time, and early photomorphogenesis. Plant Cell Physiol. 44, 1119-1130. https://doi.org/10.1093/pcp/pcg148
  68. Yan, W.H., Wang, P., Chen, H.X., Zhou, H.J., Li, Q.P., Wang, C.R., Ding, Z.H., Zhang, Y.S., Yu, S.B., Xing, Y.Z., et al. (2011). A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol. Plant 4, 319-330. https://doi.org/10.1093/mp/ssq070
  69. Yan, W.H., Liu, H.Y., Zhou, X.C., Li, Q.P., Zhang, J., Lu, L., Liu, T.M., Liu, H.J., Zhang, C.J., Zhang, Z.Y., et al. (2013). Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice. Cell Res. 23, 969-971. https://doi.org/10.1038/cr.2013.43
  70. Yang, Y., Peng, Q., Chen, G.X., Li, X.H., and Wu, C.Y. (2013). OsELF3 is involved in circadian clock regulation for promoting flowering under long-day conditions in rice. Mol. Plant 6, 202-215. https://doi.org/10.1093/mp/sss062
  71. Yano, M., Katayose, Y., Ashikari, M., Yamanouchi, U., Monna, L., Fuse, T., Baba, T., Yamamoto, K., Umehara, Y., Nagamura, Y., et al. (2000). Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the arabidopsis flowering time gene CONSTANS. Plant Cell 12, 2473-2483. https://doi.org/10.1105/tpc.12.12.2473
  72. Youn, J.H., Kim, T.W., Kim, E.J., Bu, S., Kim, S.K., Wang, Z.Y., and Kim, T.W. (2013). Structural and functional characterization of Arabidopsis GSK3-like kinase AtSK12. Mol. Cells 36, 564-570. https://doi.org/10.1007/s10059-013-0266-8
  73. Yu, J.W., Rubio, V., Lee, N.Y., Bai, S.L., Lee, S.Y., Kim, S.S., Liu, L.J., Zhang, Y.Y., Irigoyen, M.L., Sullivan, J.A., et al. (2008). COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Mol. Cell 32, 617-630. https://doi.org/10.1016/j.molcel.2008.09.026
  74. Zhao, J.M., Huang, X., Ouyang, X.H., Chen, W.L., Du, A.P., Zhu, L., Wang, S.G., Deng, X.W., and Li, S.G. (2012). OsELF3-1, an ortholog of Arabidopsis EARLY FLOWERING 3, regulates rice circadian rhythm and photoperiodic flowering. PLoS One 7, e43705. https://doi.org/10.1371/journal.pone.0043705

피인용 문헌

  1. Genes Contributing to Domestication of Rice Seed Traits and Its Global Expansion vol.9, pp.10, 2018, https://doi.org/10.3390/genes9100489
  2. The Rice Floral Repressor Early flowering1 Affects Spikelet Fertility By Modulating Gibberellin Signaling vol.8, pp.None, 2015, https://doi.org/10.1186/s12284-015-0058-1
  3. OsNF-YC2 and OsNF-YC4 proteins inhibit flowering under long-day conditions in rice vol.243, pp.3, 2015, https://doi.org/10.1007/s00425-015-2426-x
  4. The OsHAPL1-DTH8-Hd1 complex functions as the transcription regulator to repress heading date in rice vol.68, pp.3, 2015, https://doi.org/10.1093/jxb/erw468
  5. QTL-seq analysis identifies two genomic regions determining the heading date of foxtail millet, Setaria italica (L.) P.Beauv. vol.67, pp.5, 2015, https://doi.org/10.1270/jsbbs.17061
  6. Fine-tuning of the setting of critical day length by two casein kinases in rice photoperiodic flowering vol.69, pp.3, 2018, https://doi.org/10.1093/jxb/erx412
  7. The rice zebra3 ( z3 ) mutation disrupts citrate distribution and produces transverse dark-green/green variegation in mature leaves vol.11, pp.None, 2018, https://doi.org/10.1186/s12284-017-0196-8
  8. A WUSCHEL Homeobox Transcription Factor, OsWOX13, Enhances Drought Tolerance and Triggers Early Flowering in Rice vol.41, pp.8, 2015, https://doi.org/10.14348/molcells.2018.0203
  9. Phosphorylation‐mediated signalling in flowering: prospects and retrospects of phosphoproteomics in crops vol.96, pp.5, 2015, https://doi.org/10.1111/brv.12748