One of the most visible developments in Decision Support Systems (DSS) was the emergence of rule-based expert systems. Hence, despite their success in many sectors, developers of Medical Rule-Based Systems have met several critical problems. Firstly, the rules are related to a clearly stated subject. Secondly, a rule-based system can only learn by updating of its rule-base, since it requires explicit knowledge of the used domain. Solutions to these problems have been sought through improved techniques and tools, improved development paradigms, knowledge modeling languages and ontology, as well as advanced reasoning techniques such as case-based reasoning (CBR) which is well suited to provide decision support in the healthcare setting. However, using CBR reveals some drawbacks, mainly in its interrelated tasks: the retrieval and the adaptation. For the retrieval task, a major drawback raises when several similar cases are found and consequently several solutions. Hence, a choice for the best solution must be done. To overcome these limitations, numerous useful works related to the retrieval task were conducted with simple and convenient procedures or by combining CBR with other techniques. Through this paper, we provide a combining approach using the multi-criteria analysis (MCA) to help, the traditional retrieval task of CBR, in choosing the best solution. Afterwards, we integrate this approach in a decision model to support medical decision. We present, also, some preliminary results and suggestions to extend our approach.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.05a
/
pp.81-86
/
2002
In current CBR(Case-Based Reasoning) systems, the case adaptation is usually performed by rule-based method that use rules hand-coded by the system developer. So, CBR system designer faces knowledge acquisition bottleneck similar to those found in traditional expert system design. In this thesis, 1 present a model for learning method of case adaptation knowledge using case base. The feature difference of each pair of cases are noted and become the antecedent part of an adaptation rule, the differences between the solutions in the compared cases become the consequent part of the rule. However, the number of rules that can possibly be discovered using a learning algorithm is enormous. The first method for finding cases to compare uses a syntactic measure of the distance between cases. The threshold fur identification of candidates for comparison is fixed th the maximum number of differences between the target and retrived case from all retrievals. The second method is to use similarity metric since the threshold method may not be an accurate measure. I suggest the elimination method of duplicate rules. In the elimination process, a confidence value is assigned to each rule based on its frequency. The learned adaptation rules is applied in riven target Problem. The basic. process involves search for all rules that handle at least one difference followed by a combination process in which complete solutions are built.
In this research, we developed an efficient Hangul document classification system for text mining. We mean 'efficient' by maintaining an acceptable classification performance while taking shorter computing time. In our system, given a query document, k documents are first retrieved from the document case base using the k-nearest neighbor technique, which is the main algorithm of case-based reasoning. Then, TFIDF method, which is the traditional vector model in information retrieval technique, is applied to the query document and the k retrieved documents to classify the query document. We call this procedure 'CB_TFIDF' method. The result of our research showed that the classification accuracy of CB_TFIDF was similar to that of traditional TFIDF method. However, the average time for classifying one document decreased remarkably.
In this study, we propose a virtual community recommendation model based on user behavioral models. It is designed to recommend optimal virtual communities for an active user by applying case-based reasoning (CBR) using behavioral factors suggested in the technology acceptance model (TAM) and its extensions. Also, it is designed to filter its case-base by considering the user's needs type before applying CBR. To test the usefulness of our model, we conduct two-step validation - experimental validation for the collected data, and survey validation for investigating the actual satisfaction level. Experimental results show that our model presents effective recommendation results in an efficient way. In addition, they also show that the information on the user's needs type may generate opportunities for cross-selling other commercial items.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2000.06a
/
pp.1046-1050
/
2000
The necessity of diagnosis of the rotating machinery which is widely used in the industry is increasing. If rotating machinery has fault, we can detect fault using vibration or noise. But, in diagnosing rotating machinery, the end user who doesn't have expert knowledge needs the help of vibration diagnosis expert. However, vibration diagnosis experts who well satisfy the demand of end user are rare. So, this paper propose a development of the case-based reasoning system for abnormal vibration diagnosis of rotating machinery we construct the past experiences of vibration diagnosis expert into case base and shear the experiences of diagnosis expert with the end user. In this paper, we describe that process of structured system and adapting result of abnormal vibration diagnosis of electric motor.
Information society is dramatically developing in the various areas of finance, trade, medical service, energy, and education using information system. Evaluation for risk analysis should be done before security management for information system and security risk analysis is the best method to safely prevent it from occurrence, solving weaknesses of information security service. In this paper, Modeling it did the evaluation-base CBD function it will be able to establish the evaluation plan of optimum. Evaluation-based CBD(case-based reasoning) functions manages a security risk analysis evaluation at project unit. it evaluate the evaluation instance for beginning of history degree of existing. It seeks the evaluation instance which is similar and Result security risk analysis evaluation of optimum about under using planning.
Journal of the Korean Operations Research and Management Science Society
/
v.28
no.3
/
pp.31-47
/
2003
Quality design in practice highly depends on human designer's intuition and past experiences due to lack of formal knowledge about the relationship among 10 variables. This paper represents an data mining approach for developing quality design support system that integrates Case Based Reasoning (CBR) and Artificial Neural Networks (ANN) to effectively support all the steps in quality design process. CBR stores design cases in a systematic way and retrieve them quickly and accurately. ANN predicts the resulting quality attributes of design alternatives that are generated from CBR's adaptation process. When the predicted attributes fail to meet the target values, quality design simulation starts to further adapt the alternatives to the customer's new orders. To implement the quality design simulation, this paper suggests (1) the data screening method based on ξ-$\delta$ Ball to obtain the robust ANN models from the large production data bases, (2) the procedure of quality design simulation using ANN and (3) model management system that helps users find the appropriate one from the ANN model base. The integration of CBR and ANN provides quality design engineers the way that produces consistent and reliable design solutions in the remarkably reduced time.
With the recent expansion of internet shopping mall, the importance of intelligent products recommendation agents has been increasing. for the products recommendation, This paper propose case-based reasoning approach, and developed a case-based bundle products recommendation system which can recommend a set of sea food used in family events. To apply CBR approach to the bundle products recommendation, it requires the following 4R steps : \circled1 Retrieval, \circled2 Reuse, \circled3 Revise, \circled4 Retain. To retrieve similar cases from the case-base efficiently, case representation scheme is most important. This paper used OW(Object Modeling Technique) to represent bundle products recommendation cases, and developed a similarity measure method to search similar cases. To measure similarity, we used weight-sum approach basically. Especially This paper propose the meaning and uses of taxonomies for representing case features.
A project planning is one of the most important processes that determines success and failure of the project. A pre-project planning is also essential job for information system implementations at the early stage of project planning, especially for management information system like ERP. However, pre-project planning is very difficult, because lots of factors and their relationships should be considered. Pre-project planning of ERP implementation has been done by project manager's own knowledge and experiences. In this article, we propose a system that help project manager to make a pre-project plan of ERP project with case-based reasoning(CBR) framework. The proposed CBR system saves previous cases of ERP pre-project planning in the case base. Then, the system finds the most similar case with the current pre-project planning problem. Project manager can make a pre-project plan by adjusting the most similar case. From the interview with project managers, we collect some field cases of ERP implementation. We organized these cases by using XML(Extensible Markup Language), which is good for representing hierarchical information. XML gives us some flexibilities to correct and maintain cases. We make a prototype system, PPSS(Project Planning Support System) that help project manager to make a pre-project plan of ERP implementations. The object of the system is to support project manager to make a pre-project plan of ERP. We hope the result of the study can be applied to other information systems. Our research would be extended to cover other stages of project planning.
A project planning is one of the most important processes that determines success and failure of the project. A pre-project planning is also essential job for information system implementations at the early stage of project planning, especially for management information system like ERP. However, pre-project planning is very difficult, because lots of factors and their relationships should be considered. Pre-project planning of ERP implementation has been done by project manager's own knowledge and experiences. In this article, we propose a system that help project manager to make a pre-project plan of ERP project with case-based reasoning(CBR) framework. The proposed CBR system saves previous cases of ERP pre-project planning in the case base. Then, the system finds the best similar case with the current pre-project planning problem. Project manager can make a pre-project plan by adjusting the most similar case. From the interview with project managers, we collect some field cases of ERP implementation. We organized these cases by using XML(Extensible Markup Language), which is good for representing hierarchical information. XML gives us some flexibilities to correct and maintain cases. We make a prototype system, PPSS(Project Planning Support System) that help project manager to make a pre-project plan of ERP implementations. The object of the system is to support project manager to make a pre-project plan of ERP. We hope the result of the study can be applied to other information systems. Our research should be extended to cover other stages of project planning.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.