• Title/Summary/Keyword: case base reasoning

Search Result 91, Processing Time 0.02 seconds

A Representation of Uncertain Knowledge of Rule Base Reasoning and Case Base Reasoning (규칙베이스와 사례베이스 추론의 불확실한 지식의 표현)

  • Chung, Gu-Bum;Roh, Eun-Young;Chung, Hawn-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.165-170
    • /
    • 2011
  • It is expected that the cooperation between rule-based reasoning and case-based reasoning gives us an efficient approach for flexible reasoning. In this paper, we present an integrated model of rule-base reasoning and case-base reasoning using the MVL automata model. In addition, we introduce how to handle the uncertainty in the integrated model.

A Study On the Integration Reasoning of Rule-Base and Case-Base Using Rough Set (라프집합을 이용한 규칙베이스와 사례베이스의 통합 추론에 관한 연구)

  • Jin, Sang-Hwa;Chung, Hwan-Mook
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.1
    • /
    • pp.103-110
    • /
    • 1998
  • In case of traditional Rule-Based Reasoning(RBR) and Case-Based Reasoning(CBR), although knowledge is reasoned either by one of them or by the integration of RBR and CBR, there is a problem that much time should be consumed by numerous rules and cases. In order to improve this time-consuming problem, in this paper, a new type of reasoning technique, which is a kind of integration of reduced RB and CB, is to be introduced. Such a new type of reasoning uses Rough Set, by which we can represent multi-meaning and/or random knowledge easily. In Rough Set, solution is to be obtained by its own complementary rules, using the process of RB and CB into equivalence class by the classification and approximation of Rough Set. and then using reduced RB and CB through the integrated reasoning.

  • PDF

Electrical Fire Cause Diagnosis System based on Fuzzy Inference

  • Lee, Jong-Ho;Kim, Doo-Hyun
    • International Journal of Safety
    • /
    • v.4 no.2
    • /
    • pp.12-17
    • /
    • 2005
  • This paper aims at the development of an knowledge base for an electrical fire cause diagnosis system using the entity relation database. The relation database which provides a very simple but powerful way of representing data is widely used. The system focused on database construction and cause diagnosis can diagnose the causes of electrical fires easily and efficiently. In order to store and access to the information concerned with electrical fires, the key index items which identify electrical fires uniquely are derived out. The knowledge base consists of a case base which contains information from the past fires and a rule base with rules from expertise. To implement the knowledge base, Access 2000, one of DB development tools under windows environment and Visual Basic 6.0 are used as a DB building tool. For the reasoning technique, a mixed reasoning approach of a case based inference and a rule based inference has been adopted. Knowledge-based reasoning could present the cause of a newly occurred fire to be diagnosed by searching the knowledge base for reasonable matching. The knowledge-based database has not only searching functions with multiple attributes by using the collected various information(such as fire evidence, structure, and weather of a fire scene), but also more improved diagnosis functions which can be easily wed for the electrical fire cause diagnosis system.

Electrical Fire Cause Diagnosis System Using a Knowledge Base

  • Lee, Jong-Ho;Kim, Doo-Hyun;Kim, Sung-Chul
    • International Journal of Safety
    • /
    • v.6 no.2
    • /
    • pp.27-32
    • /
    • 2007
  • For last several decades with the achievement of fast economic development, the electrical fires occupies over 30 percent of total fire incidents almost every year in Korea and not decreased in spite of much times and efforts. Electrical fire cause diagnostics are to confirm a cause for the fire by examination of fire scene. Cause diagnosis methods haven't been systematized yet, because of limits for available information, investigator's biased knowledge, etc. Therefore, in order to assist the investigators and to find out the exact causes of electrical fires, required is research for an electrical fire cause diagnosis system using DB, computer programming and some mathematical tools. The electrical fire cause diagnosis system has two functions of DB and electrical fire cause diagnosis. The cause diagnosis is conducted by a case-based reasoning on a case base and rule-based reasoning on a rule base. For the diagnosis with high reliability, a mixed reasoning approach of a case-based reasoning and fuzzy rule-based reasoning has been adopted. The electrical fire cause diagnosis system proposes the electrical fire causes inferred from the diagnosis processes, and possibility of the causes as well.

Study on Inference and Search for Development of Diagnostic Ontology in Oriental Medicine (한의진단 Ontology 구축을 위한 추론과 탐색에 관한 연구)

  • Park, Jong-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.745-750
    • /
    • 2009
  • The goal of this study is to examine on reasoning and search for construction of diagnosis ontology as a knowledge base of diagnosis expert system in oriental medicine. Expert system is a field of artificial intelligence. It is a system to acquire information with diverse reasoning methods after putting expert's knowledge in computer systematically. A typical model of expert system consists of knowledge base and reasoning & explanatory structure offering conclusion with the knowledge. To apply ontology as knowledge base to expert system practically, consideration on reasoning and search should be together. Therefore, this study compared and examined reasoning, search with diagnosis process in oriental medicine. Reasoning is divided into Rule-based reasoning and Case-based reasoning. The former is divided into Forward chaining and Backward chaining. Because of characteristics of diagnosis, sometimes Forward chaining or backward chaining are required. Therefore, there are a lot of cases that Hybrid chaining is effective. Case-based reasoning is a method to settle a problem in the present by comparing with the past cases. Therefore, it is suitable to diagnosis fields with abundant cases. Search is sorted into Breadth-first search, Depth-first search and Best-first search, which have respectively merits and demerits. To construct diagnosis ontology to be applied to practical expert system, reasoning and search to reflect diagnosis process and characteristics should be considered.

Development of A CAPP System Based on Case-Based Reasoning (Case-Based Reasoning을 이용한 자동공정계획 시스템의 구축)

  • 이홍희;이덕만
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.46
    • /
    • pp.181-196
    • /
    • 1998
  • The aim of this research is the development of a CAPP system which can use the old experience of process planning to generate a process plan for a new part and learn from its own experience using the concept of stratified case-based reasoning(CBR). A process plan is determined through the hierarchical process planning procedure that is based on the hierarchical feature structure of a part. Each part and case have their own multiple abstractions that are determined by the feature structure of the part. Retrieving the case in stratified case-based process planning is accomplished by retrieving the abstraction that is most similar to the input part abstraction in each abstraction level of the case-base. A new process plan is made by the adaptation that translates the old case's process plan into the process plan of a new part. Operations, machines and tools, setups and operation sequence in each setup are determined in the adaptation of abstraction using some algorithms and the reasoning based on knowledge-base. By saving a new part and its process plan as a case, the system can use this new case in the future to generate a process plan of a similar part. That is, the system can learn its own experience of process planning. A new case is stored by adding the new abstractions that are required to save as the new abstraction to the existing abstractions in the case-base.

  • PDF

Development of Case-adaptation Algorithm using Genetic Algorithm and Artificial Neural Networks

  • Han, Sang-Min;Yang, Young-Soon
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.3
    • /
    • pp.27-35
    • /
    • 2001
  • In this research, hybrid method with case-based reasoning and rule-based reasoning is applied. Using case-based reasoning, design experts'experience and know-how are effectively represented in order to obtain a proper configuration of midship section in the initial ship design stage. Since there is not sufficient domain knowledge available to us, traditional case-adaptation algorithms cannot be applied to our problem, i.e., creating the configuration of midship section. Thus, new case-adaptation algorithms not requiring any domain knowledge are developed antral applied to our problem. Using the knowledge representation of DnV rules, rule-based reasoning can perform deductive inference in order to obtain the scantling of midship section efficiently. The results from the case-based reasoning and the rule-based reasoning are examined by comparing the results with various conventional methods. And the reasonability of our results is verified by comparing the results wish actual values from parent ship.

  • PDF

Multiple Case-based Reasoning Systems using Clustering Technique (클러스터링 기법에 의한 다중 사례기반 추론 시스템)

  • 이재식
    • Journal of Intelligence and Information Systems
    • /
    • v.6 no.1
    • /
    • pp.97-112
    • /
    • 2000
  • The basic idea of case-based reasoning is to solve a new problem using the previous problem-solving experiences. In this research we develop a case-based reasoning system for equipment malfunction diagnosis. We first divide the case base into clusters using the case-based clustering technique. Then we develop an appropriate case-based diagnostic system for each cluster. In other words for individual cluster a different case-based diagnostic system which uses different weights for attributes is developed. As a result multiple case-based reasoning system are operating to solve a diagnostic problem. In comparison to the performance of the single case-based reasoning system our system reduces the computation time by 50% and increases the accuracy by 5% point.

  • PDF

Recommending System of Products on e-shopping malls based on CBR and RBR (사례기반추론과 규칙기반추론을 이용한 e-쇼핑몰의 상품추천 시스템)

  • Lee, Gun-Ho;Lee, Dong-Hun
    • The KIPS Transactions:PartD
    • /
    • v.11D no.5
    • /
    • pp.1189-1196
    • /
    • 2004
  • It is a major concern of e-shopping mall managers to satisfy a variety of customer's desire by recommending a proper product to the perspective purchaser. Customer information like customer's fondness, age, gender, etc. in shopping has not been used effectively for the customers or the suppliers. Conventionally, e-shopping mall managers have recommended specific items of products to their customers without considering thoroughly in a customer point of view. This study introduces the ways of a choosing and recommending of products using case-based reasoning and rule-based reasoning for customer themselves or others. A similarity measure between one member's idiosyncrasy and the other members' is developed based on the rule base and the case base. The case base is improved for the system intelligence by recognizing and learning the changes of customer's desire and shopping trend.

Case-Based Reasoning Framework for Data Model Reuse (데이터 모델 재사용을 위한 사례기반추론 프레임워크)

  • 이재식;한재홍
    • Journal of Intelligence and Information Systems
    • /
    • v.3 no.2
    • /
    • pp.33-55
    • /
    • 1997
  • A data model is a diagram that describes the properties of different categories of data and the associations among them within a business or information system. In spite of its importance and usefulness, data modeling activity requires not only a lot of time and effort but also extensive experience and expertise. The data models for similar business areas are analogous to one another. Therefore, it is reasonable to reuse the already-developed data models if the target business area is similar to what we have already analyzed before. In this research, we develop a case-based reasoning system for data model reuse, which we shall call CB-DM Reuser (Case-Based Data Model Reuser). CB-DM Reuse consists of four subsystems : the graphic user interface to interact with end user, the data model management system to build new data model, the case base to store the past data models, and the knowledge base to store data modeling and data model reusing knowledge. We present the functionality of CB-DM Reuser and show how it works on real-life a, pp.ication.

  • PDF