• Title/Summary/Keyword: carrier mobility

Search Result 677, Processing Time 0.027 seconds

Electrical and Optical Properties of In-doped CdS Films Prepared by Vacuum Evaporation (진공증착법으로 제조한 CdS:In 박막의 전기 및 광학적 특성)

  • 김시열;임호빈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.101-104
    • /
    • 1992
  • In-doped CdS thin films have been deposited at 150$^{\circ}C$ by simultaneous thermal evaporation of CdS and In. Deposition rate and film thickness were 8A/sec and about 1um, respectively. Indium doping concentration of films varied as Indium source temperature from 500$^{\circ}C$ to 700˚. Properties of In-CdS films have been investigatied by measurements of electrical resistivity, Hall effect, X-ray diffraction and optical trasmission spectra. The conductivity of these films was always n-type. The resistivity, carrier concentration, mobility and optical band gap dependence on Indium source temperature are reported. Carrier concentration and mobility of In-CdS films increased with increasing Indium source temperature: then they decreased. The variation of the optical band gap of In-CdS thin films are related to carrier concentration.

  • PDF

Organic light emitting diodes using Iron(II) and Metal-free Phthalocyanine (Iron(II)과 Metal-free Phthalocyanine의 결정구조 변화에 따르는 유기 발광소자의 발광 특성)

  • 임은주;한우미;이정윤;김명식;이기진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.947-950
    • /
    • 2001
  • We report the characteristics of organic light emitting diodes (OLEDS) by controlling the carrier mobility according to the crystalline of Iron(II) Phthalocyanine(Fe-Pc) and metal-free Phthalocyanine (H$_2$-Pc). In order to change the recombination zone, we controlled the hole mobility by changing the crystal structures of Fe-Pc and H$_2$-Pc. OLEDs were constructed with ITO/Fe-Pc/triphenyl-diamine (TPD)/tris-(8-hydroxyquinoline)aluminum (Alq$_3$)/Al and ITO/H$_2$-Pc/triphenyl-diamine (TPD)/tris-(8-hydroxyquinoline)aluminum (Alq$_3$)/Al. The electroluminescent properties were changed according to the heat-treatments of Fe-Pc and H$_2$-Pc. We observed that the recombination zone and the carrier mobility were changed as the higher occupied molecular orbital levels of Fe-Pc and H$_2$-Pc decreased.

  • PDF

Effects of Carrier Mobility on Photocurrent Generation in $TiO_2/Poly$(alkylthiophene) Photovoltaic Devices

  • Song, Mi-Yeon;Kim, Kang-Jin;Kim, Dong-Young
    • Macromolecular Research
    • /
    • v.14 no.6
    • /
    • pp.630-633
    • /
    • 2006
  • In heterojunction photovoltaic devices of $ITO/TiO_2/poly$(3-alkylthiophene)/Au, the photo current was characterized at different temperatures for different alkyl chain lengths and regioregularities: regiorandom, regioregular poly(3-hexylthiophene), and regioregular poly(3-dodecylthiophene). The regioregularity and alkyl chain length affected the photovoltaic characteristics due to differences in hole-carrier transportation. The drift charge mobilities of these devices were analyzed by the space-charge-limited current theory using the relation between the dark current and the bias voltage. The photocurrent in the devices based on poly(3-alkylthiophene)s decreased rapidly below the temperature at which the drift charge mobility was $10^{-5}\;cm^2/V{\cdot}s$.

Facilitated Transport of Oxygen in Copolymer Membranes of Styrene and 4-Vinylpyridine Containing Cobalt Schist Base Carrier : Effect of Membrane Thickness and Carrier Concentration

  • Hong, Jae-Min;Kang, Yong-Soo
    • Macromolecular Research
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • The valiclity of the simple mathematical model for facilitated transport in a solid state membrane developed previously has been examined againsts the carrier concentration and membrane thick-ness. Membranes are prepared with copolymer of styrene and 4-vinylpyridine as a matrix and Co(salen) as a carrier. 4-Vinylpyridine is incorporated to provide the coordination site for Co(salen) carrier. Oxygen permeability through the facilitated transport membrane is linearly increased with the square of its thick-ness, as predicted by the mathematical model. However, the oxygen permeability does not increase linearly with the carrier concentration. This seems to be due to the deactivation of the carrier by dimerization at high carrier concentrations as well as the reduced chain mobility by coordination of bulky Co(salen) carrier.

  • PDF

Dependence of Analog and Digital Performance on Carrier Direction in Strained-Si PMOSFET (Strained-Si PMOSFET에서 디지털 및 아날로그 성능의 캐리어 방향성에 대한 의존성)

  • Han, In-Shik;Bok, Jung-Deuk;Kwon, Hyuk-Min;Park, Sang-Uk;Jung, Yi-Jung;Shin, Hong-Sik;Yang, Seung-Dong;Lee, Ga-Won;Lee, Hi-Deok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.8
    • /
    • pp.23-28
    • /
    • 2010
  • In this paper, comparative analysis of digital and analog performances of strained-silicon PMOSFETs with different carrier direction were performed. ID.SAT vs. ID.OFF and output resistance, Rout performances of devices with <100> carrier direction were better than those of <110> direction due to the greater carrier mobility of <100> channel direction. However, on the contrary, NBTI reliability and device matching characteristics of device with <100> carrier direction were worse than those with <110> carrier direction. Therefore, simultaneous consideration of analog and reliability characteristics as well as DC device performance is highly necessary when developing mobility enhancement technology using the different carrier direction for nano-scale CMOSFETs.

Effects of Neutral Particle Beam on Nano-Crystalline Silicon Thin Film Deposited by Using Neutral Beam Assisted Chemical Vapor Deposition at Room Temperature

  • Lee, Dong-Hyeok;Jang, Jin-Nyoung;So, Hyun-Wook;Yoo, Suk-Jae;Lee, Bon-Ju;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.254-255
    • /
    • 2012
  • Interest in nano-crystalline silicon (nc-Si) thin films has been growing because of their favorable processing conditions for certain electronic devices. In particular, there has been an increase in the use of nc-Si thin films in photovoltaics for large solar cell panels and in thin film transistors for large flat panel displays. One of the most important material properties for these device applications is the macroscopic charge-carrier mobility. Hydrogenated amorphous silicon (a-Si:H) or nc-Si is a basic material in thin film transistors (TFTs). However, a-Si:H based devices have low carrier mobility and bias instability due to their metastable properties. The large number of trap sites and incomplete hydrogen passivation of a-Si:H film produce limited carrier transport. The basic electrical properties, including the carrier mobility and stability, of nc-Si TFTs might be superior to those of a-Si:H thin film. However, typical nc-Si thin films tend to have mobilities similar to a-Si films, although changes in the processing conditions can enhance the mobility. In polycrystalline silicon (poly-Si) thin films, the performance of the devices is strongly influenced by the boundaries between neighboring crystalline grains. These grain boundaries limit the conductance of macroscopic regions comprised of multiple grains. In much of the work on poly-Si thin films, it was shown that the performance of TFTs was largely determined by the number and location of the grain boundaries within the channel. Hence, efforts were made to reduce the total number of grain boundaries by increasing the average grain size. However, even a small number of grain boundaries can significantly reduce the macroscopic charge carrier mobility. The nano-crystalline or polymorphous-Si development for TFT and solar cells have been employed to compensate for disadvantage inherent to a-Si and micro-crystalline silicon (${\mu}$-Si). Recently, a novel process for deposition of nano-crystralline silicon (nc-Si) thin films at room temperature was developed using neutral beam assisted chemical vapor deposition (NBaCVD) with a neutral particle beam (NPB) source, which controls the energy of incident neutral particles in the range of 1~300 eV in order to enhance the atomic activation and crystalline of thin films at room temperature. In previous our experiments, we verified favorable properties of nc-Si thin films for certain electronic devices. During the formation of the nc-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. The more resent work on nc-Si thin film transistors (TFT) was done. We identified the performance of nc-Si TFT active channeal layers. The dependence of the performance of nc-Si TFT on the primary process parameters is explored. Raman, FT-IR and transmission electron microscope (TEM) were used to study the microstructures and the crystalline volume fraction of nc-Si films. The electric properties were investigated on Cr/SiO2/nc-Si metal-oxide-semiconductor (MOS) capacitors.

  • PDF

Improvement of Charge Carrier Mobility of Organic Field-Effect Transistors through The Surface Energy Control (표면 에너지 제어를 통한 유기 전계 효과 트랜지스터의 전하 이동도 향상)

  • Seokkyu Kim;Kwanghoon Kim;Dongyeong Jeong;Yongchan Jang;Minji Kim;Wonho Lee;Eunho, Lee
    • Journal of Adhesion and Interface
    • /
    • v.24 no.2
    • /
    • pp.64-68
    • /
    • 2023
  • Organic field-effect transistors (OFETs) are attracting attention in the field of next-generation electronic devices, and they can be fabricated on a flexible substrate using an organic semiconductor as a channel layer. In particular, DPP-based semiconducting conjugated polymers are actively used because they have higher charge carrier mobility than other organic semiconductors, but they are still lower than inorganic semiconductors, so various studies are being conducted to improve the charge carrier mobility. In this study, the charge carrier mobility is improved by controlling the surface energy of the substrate by forming self-assembled monolayers (SAMs). As the surface energy of the substrate is controlled by the SAMs, the crystallinity increases, thereby improving the charge carrier mobility by 14 times from 3.57×10-3 cm2V-1s-1 to 5.12×10-2 cm2V-1s-1

Preparation of ITO Thin Films for Display Application with $O_2$ Gas Flow Ratio and Input Current by FTS (Facing Targets Sputtering) System

  • Kim, H.W.;Keum, M.J.;Lee, K.S.;Kim, H.K.;Kim, K.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1477-1479
    • /
    • 2005
  • In this work, the ITO thin films were prepared by FTS (Facing Targets Sputtering) system under different sputtering conditions which were varying $O_2$ gas flow, input current at room temperature. As a function of sputtering conditions, electrical and optical properties of prepared ITO thin films were measured. The electrical, optical characteristics and surface roughness of prepared ITO thin films were measured. In the results, as increasing $O_2$ gas 0.1[sccm] to 0.7[sccm], resistivity of ITO thin film was increased with a decreasing carrier concentration, $O_2$ gas over 0.3[sccm] the carrier mobility have a similarly value. Transmittance of prepared ITO thin films were improved at increasing $O_2$ gas 0.1[sccm] to 0.7[sccm]. And transmittance of all of the prepared ITO thin films was over 80%. We could obtain resistivity $6.19{\times}10^{-4}[{\omega}{\cdot}cm]$, carrier mobility $22.9[cm^2/V{\cdot}sec]$, carrier concentration $4.41{\times}10^{20}[cm^{-3}]$ and transmittance over 80% of ITO thin film prepared at working pressure 1mTorr, input current 0.4A without any substrate heating.

  • PDF

The Crystal Growth and Electrical Characteristics of $Al_{x}Ga_{1-x}Sb$ ($Al_{x}Ga_{1-x}Sb$ 결정 성장과 전기적 특성)

  • 이재구;정성훈;송복식;문동찬;김선태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.185-188
    • /
    • 1996
  • The doped n-type $Al_{x}Ga_{1-x}Sb$ crystals were grown by the vertical Bridgman method at composition ratio x=0, x=0.1, x=02 respectively. The lattice constants of the $Al_{x}Ga_{1-x}Sb$ crystals were 6.096${\AA}$, 6.097${\AA}$, 6.106${\AA}$ at composition ratio respectively. The carrier concentration, the resistivity, and the carrier mobility measured by the Van der Pauw method at x-0 were n≡1 x $10^{17}$$cm^{-3}$, $\rho$≡0.15 ${\Omega}$-cm, ${\mu}$$_{n}$≡500 $\textrm{cm}^2$$V^{-1}$$sec^{-1}$ at 300K. The carrier concentration, the resistivity, and the carrier mobility measured by the Van der Pauw method at x=0.1 were n≡2.96 x $10^{15}$$cm^{-3}$, $\rho$≡103 $\textrm{cm}^2$$V^{-1}$$sec^{-1}$ at 300K.

  • PDF

Dependance on Metal Electrode of Poly(3-hexylthiophene) EL Device (Poly(3-hexylthiophene) 발광소자의 금속전극 의존성)

  • 서부완;김주승;김형곤;이경섭;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.162-165
    • /
    • 2000
  • To investigate the effect of metal electrode in electroluminescent[EL] devices, we fabricated EL devices of ITO/P3HT/Al, ITO/P3HT/LiF/Al and ITO/P3HT/Mg:In structure. In current-voltage-light power characteristics, turn-on voltage of EL devices using LiF insulating layer and Mg:In(2.8V) metal electrode is lower than EL device using Al(4.2V). Besides the external quantum efficiency is improved also. The reason is related to carrier mobility and carrier injection, which would affect the hole-electron balance. In the device with Al electrode, holes injected from indium-tin-oxide[ITO] to poly(3-hexylthiophene)[P3HT] might reach the Al electrode without interacting with injected electrons, because the electron injection efficiency was very low for this electrode. Besides oxidation of the Al electrode is likely due to holes reaching the cathode without meeting injected electrons. Another possible reason for the higher EL efficiency may be the insulating layer playing the role of a tunneling barrier for holes to the Al electrode. In all EL devices, the orange-red light was clearly visible in a dark room. Maximum peak wavelength of EL spectrum emitted at 640nm in accordance with photon energy 1.9eV

  • PDF