• Title/Summary/Keyword: cargo container

Search Result 398, Processing Time 0.027 seconds

A Study on the Containerization of Non-standardization Cargo for the Competitiveness Improvement of Gwangyang Port (광양항의 경쟁력 제고를 위한 비표준화 화물의 컨테이너화에 관한 연구)

  • Choe, Song-Hui
    • Journal of Korea Port Economic Association
    • /
    • v.35 no.3
    • /
    • pp.93-108
    • /
    • 2019
  • This study aims to suggest a containerization plan for non-standardized cargo; it also reveals the significance of containerization in facilitating freight inducement and cargo creation for increasing the competitiveness of the Gwangyang port container terminal and checking excessive competition among terminal operators. Therefore, this study suggested a containerization plan and its significance by dividing 14 items, ones with low containerization ratios or undergoing containerization, bulk, and liquid cargoes. In the case of general cargo, it will be necessary to raise the utilization rate by remodeling a general container or improving cargo loading techniques. In the case of bulk cargo, it will be necessary to exploit the benefits of containerization in preventing product deterioration due to rain, facilitating the sale of small orders, ensuring clean cargo handling, and reducing logistics cost, among others. In the case of liquid cargo, it will be necessary to order and sell liquid cargo in small quantities by using superior quality, safe, and durable Flexitank or Flexibag products, which offer transportation convenience and reduce time and costs.

A Study on Container Monitoring Loaded into the Hold in Maritime Logistics (해상운송 환경에서 IP-RFID 기술을 이용한 선박 홀드에 적재된 컨테이너 상태 모니터링에 관한 연구)

  • Kim, Tae-Hoon;Choi, Sung-Pill;Moon, Young-Sik;Lee, Byung-Ha;Jung, Jun-Woo;Park, Byung-Kwon;Kim, Jae-Joong;Choi, Hyung-Rim
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1446-1455
    • /
    • 2016
  • The recent increase of fresh farm products, hazardous cargos, and high-priced goods in marine transportation has caused an increased demand of cargo owners and shipping companies with regard to the monitoring of the location and state of cargo. To meet this increase, numerous technologies are being studied for the monitoring of the cargo state. Cargo containers on a ship are loaded on a ship's deck and in a ship's hold, which is located under the deck. However, Since the developed technologies mostly transfer the container status information that collected by mobile communication, it costs a lot to install communication infrastructure on ship. And the ship's hold is completely sealed with a cover, and communication with the reader positioned at the ship's bridge is difficult. Therefore, most existing studies on container monitoring on ships have focused on the monitoring of containers loaded on a ship's deck. Accordingly, this study suggested system configuration for the monitoring of containers in a ship's hold using IP-RFID technology. The suggested system configuration was tested on an actual ship under navigation, and the test results are given in this study. The test results verified that the monitoring of containers in a ship's hold using IP-RFID technology is effective.

The Effect of Grid Ratio and Material of Anti-scatter Grid on the Scatter-to-primary Ratio and the Signal-to-noise Ratio Improvement Factor in Container Scanner X-ray Imaging

  • Lee, Jeonghee;Lim, Chang Hwy;Park, Jong-Won;Kim, Ik-Hyun;Moon, Myung Kook;Lim, Yong-Kon
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.4
    • /
    • pp.197-204
    • /
    • 2017
  • Background: X-ray imaging detectors for the nondestructive cargo container inspection using MeV-energy X-rays should accurately portray the internal structure of the irradiated container. Internal and external factors can cause noise, affecting image quality, and scattered radiation is the greatest source of noise. To obtain a high-performance transmission image, the influence of scattered radiation must be minimized, and this can be accomplished through several methods. The scatter rejection method using an anti-scatter grid is the preferred method to reduce the impact of scattered radiation. In this paper, we present an evaluation the characteristics of the signal and noise according to physical and material changes in the anti-scatter grid of the imaging detector used in cargo container scanners. Materials and Methods: We evaluated the characteristics of the signal and noise according to changes in the grid ratio and the material of the anti-scatter grid in an X-ray image detector using MCNP6. The grid was composed of iron, lead, or tungsten, and the grid ratio was set to 2.5, 12.5, 25, or 37.5. X-ray spectrum sources for simulation were generated by 6- and 9-MeV electron impacts on the tungsten target using MCNP6. The object in the simulation was designed using metallic material of various thicknesses inside the steel container. Using the results of the computational simulation, we calculated the change in the scatter-to-primary ratio and the signal-to-noise ratio improvement factor according to the grid ratio and the grid material, respectively. Results and Discussion: Changing the grid ratios of the anti-scatter grid and the grid material decreased the scatter linearly, affecting the signal-to-noise ratio. Conclusion: The grid ratio and material of the anti-scatter grid affected the response characteristics of a container scanner using high-energy X-rays, but to a minimal extent; thus, it may not be practically effective to incorporate anti-scatter grids into container scanners.

Study on the Forecasting and Relationship of Busan Cargo by ARIMA and VAR·VEC (ARIMA와 VAR·VEC 모형에 의한 부산항 물동량 예측과 관련성연구)

  • Lee, Sung-Yhun;Ahn, Ki-Myung
    • Journal of Navigation and Port Research
    • /
    • v.44 no.1
    • /
    • pp.44-52
    • /
    • 2020
  • More accurate forecasting of port cargo in the global long-term recession is critical for the implementation of port policy. In this study, the Busan Port container volume (export cargo and transshipment cargo) was estimated using the Vector Autoregressive (VAR) model and the vector error correction (VEC) model considering the causal relationship between the economic scale (GDP) of Korea, China, and the U.S. as well as ARIMA, a single volume model. The measurement data was the monthly volume of container shipments at the Busan port J anuary 2014-August 2019. According to the analysis, the time series of import and export volume was estimated by VAR because it was relatively stable, and transshipment cargo was non-stationary, but it has cointegration relationship (long-term equilibrium) with economic scale, interest rate, and economic fluctuation, so estimated by the VEC model. The estimation results show that ARIMA is superior in the stationary time-series data (local cargo) and transshipment cargo with a trend are more predictable in estimating by the multivariate model, the VEC model. Import-export cargo, in particular, is closely related to the size of our country's economy, and transshipment cargo is closely related to the size of the Chinese and American economies. It also suggests a strategy to increase transshipment cargo as the size of China's economy appears to be closer than that of the U.S.

Forecasting the Container Volumes of Busan Port using LSTM (LSTM을 활용한 부산항 컨테이너 물동량 예측)

  • Kim, Doo-hwan;Lee, Kangbae
    • Journal of Korea Port Economic Association
    • /
    • v.36 no.2
    • /
    • pp.53-62
    • /
    • 2020
  • The maritime and port logistics industry is closely related to global trade and economic activity, especially for Korea, which is highly dependent on trade. As the largest port in Korea, Busan Port processes 75% of the country's container cargo; the port is therefore extremely important in terms of the country's national competitiveness. Port container cargo volume forecasts influence port development and operation strategies, and therefore require a high level of accuracy. However, due to unexpected and sudden changes in the port and maritime transportation industry, it is difficult to increase the accuracy of container volume forecasting using existing time series models. Among deep learning models, this study uses the LSTM model to enhance the accuracy of container cargo volume forecasting for Busan Port. To evaluate the model's performance, the forecasting accuracies of the SARIMA and LSTM models are compared. The findings reveal that the forecasting accuracy of the LSTM model is higher than that of the SARIMA model, confirming that the forecasted figures fully reflect the actual measurement figures.

A Study on the Development of Dynamic Models under Inter Port Competition (항만의 경쟁상황을 고려한 동적모형 개발에 관한 연구)

  • 여기태;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.1
    • /
    • pp.75-84
    • /
    • 1999
  • Although many studies on modelling of port competitive situation have been conducted, both theoretical frame and methodology are still very weak. In this study, therefore, a new algorithm called ESD (Extensional System Dynamics) for the evaluation of port competition was presented, and applied to simulate port systems in northeast asia. The detailed objectives of this paper are to develop Unit fort Model by using SD(System Dynamics) method; to develop Competitive Port Model by ESD method; to perform sensitivity analysis by altering parameters, and to propose port development strategies. For these the algorithm for the evaluation of part's competition was developed in two steps. Firstly, SD method was adopted to develop the Unit Port models, and secondly HFP(Hierarchical Fuzzy Process) method was introduced to expand previous SD method. The proposed models were then developed and applied to the five ports - Pusan, Kobe, Yokohama, Kaoshiung, Keelung - with real data on each ports, and several findings were derived. Firstly, the extraction of factors for Unit Port was accomplished by consultation of experts such as research worker, professor, research fellows related to harbor, and expert group, and finally, five factor groups - location, facility, service, cargo volumes, and port charge - were obtained. Secondly, system's structure consisting of feedback loop was found easily by location of representative and detailed factors on keyword network of STGB map. Using these keyword network, feedback loop was found. Thirdly, for the target year of 2003, the simulation for Pusan port revealed that liner's number would be increased from 829 ships to 1,450 ships and container cargo volumes increased from 4.56 million TEU to 7.74 million TEU. It also revealed that because of increased liners and container cargo volumes, length of berth should be expanded from 2,162m to 4,729m. This berth expansion was resulted in the decrease of congested ship's number from 97 to 11. It was also found that port's charge had a fluctuation. Results of simulation for Kobe, Yokohama, Kaoshiung, Keelung in northeast asia were also acquired. Finally, the inter port competition models developed by ESB method were used to simulate container cargo volumes for Pusan port. The results revealed that under competitive situation container cargo volume was smaller than non-competitive situation, which means Pusan port is lack of competitive power to other ports. Developed models in this study were then applied to estimate change of container cargo volumes in competitive relation by altering several parameters. And, the results were found to be very helpful for port mangers who are in charge of planning of port development.

  • PDF

Analysis of Fleet Capacity to Enhance the Competitiveness of Container Shipping in Korea (한국 컨테이너 해운의 경쟁력 제고를 위한 선대 규모 분석)

  • Park, Sunghwa;Kim, Taeil
    • Journal of Korea Port Economic Association
    • /
    • v.33 no.3
    • /
    • pp.105-120
    • /
    • 2017
  • This study analyzed changes in the competitive structure of the global shipping container market and the appropriate capacity of the container fleet in Korea from three perspectives. The competitive market analysis applied the market concentration ratio and Hirschman-Herfindahl index, while the appropriate capacity analysis was based on the following three aspects: (1) Fleet capacity to secure competitiveness in the global shipping alliance; (2) Fleet capacity to increase national fleet coverage of domestic import and export container cargo; and (3) Fleet capacity analysis through the panel model considering the characteristics of the major shipping countries. Analysis of the global shipping container market reveals an oligopoly industry, and Korea's container fleet capacity is insufficient across all three analyses.

The Procedure for Selecting the Alternatives for Developers of Container Cranes (컨테이너크레인 개발자를 위한 대안 선정 절차)

  • Won, Seung-Hwan;Choi, Sang-Hei
    • Journal of Navigation and Port Research
    • /
    • v.32 no.8
    • /
    • pp.621-628
    • /
    • 2008
  • Container terminals keenly compete with one another because of the continuous increase of container flows and the appearance of large-sized vessels. Major cargo handling equipment manufacturers are interested in the development of new conceptual equipment to greatly increase its productivity. In this study, a two-phase procedure is suggested for selecting the optimal development alternatives, when various development alternatives for container cranes are given. The first phase removes the alternatives that violate essential requirements and the second phase selects final alternatives by the evaluation of experts and the linear assignment method. Finally, a case applying the procedure is provided.

On the analysis of container physical distribution system by simulation(Centering on BCTOC) (시뮬레이션에 의한 컨테이너 물류시스템의 분석에 관한 연구(BCTOC를 중심으로))

  • 임봉택;이재원;성경빈;이철영
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10a
    • /
    • pp.107-115
    • /
    • 1998
  • For the purpose of building the simulation model on cargo handling capacity of container terminal, we composed a model of container logistics system which has a 4 subsystems ; cargo handling, transportation, storage system and Gate complex system. Several date used in simulation gained through spot research and basic statistic analysis using raw data from January to Jane in 1998. The results of this study are as follows ; First, average available ratio of each subsystem was G/C 50%, Y/T 57.5%, storage system 56%, Gate complex 50%, and there was no subsystem occurring specific bottleneck. Second, comparing the results of simulation to the results of basic statistics, we can verify suitability of this simulation model. Third, Comparing the results of this study to the results of existed study, we were able to confirm a change of BCTOC container logistics system under IMF situation.

  • PDF