• Title/Summary/Keyword: cardiac muscle contractile force

Search Result 20, Processing Time 0.019 seconds

Genetic Variations Leading to Familial Dilated Cardiomyopathy

  • Cho, Kae Won;Lee, Jongsung;Kim, Youngjo
    • Molecules and Cells
    • /
    • v.39 no.10
    • /
    • pp.722-727
    • /
    • 2016
  • Cardiomyopathy is a major cause of death worldwide. Based on pathohistological abnormalities and clinical manifestation, cardiomyopathies are categorized into several groups: hypertrophic, dilated, restricted, arrhythmogenic right ventricular, and unclassified. Dilated cardiomyopathy, which is characterized by dilation of the left ventricle and systolic dysfunction, is the most severe and prevalent form of cardiomyopathy and usually requires heart transplantation. Its etiology remains unclear. Recent genetic studies of single gene mutations have provided significant insights into the complex processes of cardiac dysfunction. To date, over 40 genes have been demonstrated to contribute to dilated cardiomyopathy. With advances in genetic screening techniques, novel genes associated with this disease are continuously being identified. The respective gene products can be classified into several functional groups such as sarcomere proteins, structural proteins, ion channels, and nuclear envelope proteins. Nuclear envelope proteins are emerging as potential molecular targets in dilated cardiomyopathy. Because they are not directly associated with contractile force generation and transmission, the molecular pathways through which these proteins cause cardiac muscle disorder remain unclear. However, nuclear envelope proteins are involved in many essential cellular processes. Therefore, integrating apparently distinct cellular processes is of great interest in elucidating the etiology of dilated cardiomyopathy. In this mini review, we summarize the genetic factors associated with dilated cardiomyopathy and discuss their cellular functions.

Effects of Angiotensin II on Isolated Cardiac Muscle and Aortic Strips in Rabbit (안지오텐신 II의 적출심근 및 대동맥 평활근에 대한 작용기전)

  • Kim, Kyu-Chan;Kim, Ki-Whan;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • v.17 no.1
    • /
    • pp.45-54
    • /
    • 1983
  • Contractile responses of myocardium and vascular smooth muscle to angiotensin II were studied in isolated rabbit papillary muscles and aortic helical strips, with respect to the sensitivity and the mechanism of action. All experiments were performed in $HCO-_3\;-buffered Tyrode solution which was aerated with $3%\;CO_2-97%\;O_2$ and kept pH 7.35 at $35^{\circ}C$. Action potentials were measured by conventional microelectrode technique in the papillary muscles. Helical strips of vascular smooth muscle were prepared from the descending thoracic aorta of the rabbit. Angiotensin II elicited a positive inotropic effect in doses from $10^{-8}$ to $10^{-6}\;M$, and this effect was dose-dependent and characterized by a symmetrical increase of maximum dP/dt during contraction and relaxation phase. Slow responses (or slow action potentials) were induced by A. II $(10^{-6}\;M)$ in the papillary muscle hypopolarized by 27 mM $K^+$. These A. II-induced slow action potentials were eliminated by verapamil (2 mg/l), but not affected by propranolol $(10^{-5}\;M)$. In aortic helical strips, contractile force was increased dose-dependently in the range of $10^{-10}{\sim}10^{-7}\;M$ A. II. $ED_{50}$ in aorta was $3{\times}10^{-9}\;M$ A. II, whereas that in paillary muscle was $2.5{\times}10^{-7}\;M$ A. II. A. II contracted vascular smooth muscle in depolarizing concentration of $K^+$ (100 mM $K^+$), and also produced a sustained contraction even in the presence of verapamil and regitine. The results of this experiment suggest that the primarily important physiological role of A. II is the action on the blood vessel, and the positive inotropic effect of A. II in papillary muscle results from the increase of slow inward $Ca^{++}$ current, and that A. II-induced contraction of aorta is independent of transmembrane potential and associated with promoting bet transmembrane $Ca^{++}\;-influx$ and the mobilization of cellular $Ca^{++}$.

  • PDF

Pharmacological Actions of New Wonbang Woohwangchungsimwon Pill on Cardiovascular System (신원방우황청심원의 심혈관계에 관한 약효)

  • 조태순;이선미;김낙두;허인회;안형수;권광일;박석기;김상호;신대희
    • YAKHAK HOEJI
    • /
    • v.43 no.2
    • /
    • pp.237-250
    • /
    • 1999
  • In order to investigate the pharmacologic properties of New Wonbang Woohwangchungsimwon Pill(NSCH), effects of Wonbang Woohwangchungsimwon Pill (SCH) and NSCH were compared using various experimental models. In rat aorta, NSCH and SCH made the relaxation of blood vessels in maximum contractile response to phenylephrine (10-6 M) regardless to endothelium containing or denuded rings of the rat aorta. Furthermore, the presence of the inhibitors of NO synthase and guanylate cyclase did not affect significantly the relaxing effects of NSCH and SCH. NSCH and SCH inhibited the vascular contractions induced by acetylcholine, prostaglandin endoperoxide or peroxide in a dose-dependent manner. In conscious spontaneously hypertensive rats (SHRs), NSCH and SCH decreased significantly heart rate. These, at high doses, had a negative inotropic effects that was a decrease of left ventricular developed pressure and (-dp/dt)/(+dp/dt) in the isolated perfused rat hearts, and also decreased the contractile force and heart rate in the isolated rat right atria. In guinea-pig papillary muscle, these had no effects on parameters of action potential such as action potential amplitude (APA), $V_{max}$ and resting membrane potential (RMP) at low doses, whereas inhibitory the cardiac contractility at high doses. Furthermore, these had a significant inhibitory effects on palpitation of the heart in normotensive rats and SHRs. These had a significant inhibitory effects on palpitation of the heart in normotensive rats and SHRs. These results suggest that NSCH and SCH have weak cardiovascular effects, and that there is no significant differences between cardiovascular effects of two preparations.

  • PDF

Nebulin C-terminus Interacts with NCBP51, a New Isoform of RING Finger Protein 125 (RNF125)

  • Kim, Ji-Hee;Kim, Hyun-Suk;Park, Eun-Ran;Choi, Jae-Kyoung;Lee, Yeong-Mi;Choi, Jun-Hyuk;Shin, Jung-Woog;Kim, Chong-Rak
    • Biomedical Science Letters
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • Nebulin, a giant modular protein from muscle, is thought to act as molecular ruler in sarcomere assembly. In skeletal muscle, the C-terminal ${\sim}50 kDa$ region of nebulin extends into the Z-line lattice. The most recent studies implicated highlighting its extensive isoform diversity and exciting reports revealed its expression in cardiac and non-muscle tissues containing brain. Also these novel findings are indicating that nebulin is actually a multifunctional filament system, perhaps playing roles in signal transduction, contractile regulation, and myofibril force generation, as well as other not yet defined functions. However the binding protein of nebulin and function in brain is still unknown. A novel binding partner of nebulin C-terminal region was identified by screening a human brain cDNA library using yeast two-hybrid system. Nebulin C-terminus binding protein 51 (NCBP51) was contained a RING-finger domain and identified a new isoform of RING finger protein 125 (RNF125). The interaction was confirmed using the GST pull-down assay. NCBP51 belongs to a family of the RING finger proteins and its function remains to be identified in brain. The role of nebulin and NCBP51 will be studied by loss-of-function using siRNA technique in brain.

  • PDF

Studies on the Positive Inotropic Mechanism of Aconiti Tuber (부자 강심성분의 작용기전에 관한 연구)

  • Kim Myung-Suk;Kim Yong-Sik
    • The Korean Journal of Pharmacology
    • /
    • v.17 no.1 s.28
    • /
    • pp.9-15
    • /
    • 1981
  • Aconiti tuber butanol fraction, which is isolated from the chloroform insoluble and water soluble extract of Aconitum volubile, has been recently known to have a potent positive inotropic effect in the isolated cardiac muscle preparations of various animals. The positive inotropic mechanism of Aconiti tuber butanol fraction, in relation with the external calcium, was studied using the isolated cat papillary muscle. The positive inotropic effect was dependent on the calcium concentration in the nutrient medium, and a synergistic relation could be demonstrated between Aconiti tuber butanol fraction and the external calcium. The inotropic effect of $10^{-4}g/ml$ of Aconiti tuber butanol fraction was equivalent to that of 0.06mM of calcium in the medium. After the treatment with a calcium influx inhibitor, Verapamil$(2{\pm}10^{-7}-10^{-6}M)$, the contractile force of the papillary muscle was markedly inhibited. In these preparations, Aconiti tuber butanol fraction restored the decreased contractility in a dose-dependent manner. It was suggested that the positive inotropic effect of Aconiti tuber butanol fraction might be related with the stimulating action on the calcium influx through the slow inward calcium channels in the cardiac cell membrane. In contrast with digitalis cardiac glycoside, Aconiti tuber butanol fraction infused intravenously into the anesthetized rabbit decreased the systemic arterial blood pressure and increased the carotid blood flow, but produced no prominent changes in the heart rate.

  • PDF

Effect of $Ca^{++}$ on High K-induced Contracture of Isolated Frog Ventricular Muscle (적출 심근의 칼륨경축에 대한 칼슘이온 효과)

  • Choi, Youn-Baik;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.20 no.1
    • /
    • pp.31-41
    • /
    • 1986
  • The sufficient myoplasmic $Ca^{++}$ to react with the contractile proteins is necessary to induce contraction of a cardiac muscle. These $Ca^{++}$ for the production of muscle contraction are supplied from the three recognized $Ca^{++}$ sources; internal $Ca^{++}$ release via the sarcoplasmic reticulum(SR), $Ca^{++}$ influx through a gated Ca-channel in the membrane as a Isi, and $Ca^{++}$ transport by the mechanism of Na/ca exchange. However, it is still controversial which $Ca^{++}$ sources act as a main contributor for myoplasmic $Ca^{++}$, Therefore, this study was undertaken in order to examine the $Ca^{++}$ sources for the contraction of frog ventricle. There is evidence that the SR is sparse in frog ventricular fibers, and that T-tubules are absent. Isolated ventricular strips of frog, Rana nigromaculata, were used in this experiment. Isometric tension was recorded by force transducer, and membrane potentials of ventricular muscles were measured through the intracellular glass microelectrodes, which were filled with 3M KCI and had resistance of $30{\pm}50M{\Omega}$. All experiments were performed at room temperature in a tris·buffered Ringer solution which was aerated with 100% $O_2$. Isotonic high K, low Na solution was used to induce K-contracture, K-contracture appeared at the concentration of 20 to 30mM-KCI and was potentiated in parallel with the increase in KCI concentration. The contracture had two components: an initial rapid phasic and a subsequent slow tonic contractile responses. Membrane Potentials measured at normal Ringer solution(2.5mM KCI) was -90 to -100 mV, and decreased linearly as the KCI concentration increased; -55mV at 20mM.KCI, -45mV at 30 mM.KCI, -30 mY at 50 mM.KCI, and -12 mV at 100 mM.KCI. K-contracture was evoked firstly at the membrane potential of -45 mV. The contracture was potentiated by the increase of bathing extracellular $Ca^{++}$ concentration. However, in the absence of $Ca^{++}$ the contracture was almost not induced by 50 mM.KCI solution. Caffeine(20mM) in normal Ringer solution, which is known to release $Ca^{++}$ from SR without substantial effects on the $Ca^{++}$ fluxes across the surface membrane, did not affect membrane potential and also not initiate contracture, but the caffeine in 20 mM-KCI Ringer solution produced a contracture. Above results suggest that the main $Ca^{++}$ source for the K·contracture of frog ventricle is $Ca^{++}$ influx through the voltage-dependent Ca-channel, and that in the K-contracture at the concentration of 100 mM-KCI, the mechanism of Na/ca exchange also partly contributs, in addition to the $Ca^{++}$ influx.

  • PDF

Pharmacological Actions of New Woohwangchungsimwon Pill on Cardiovascular System (신우황청심원의 심혈관계에 대한 약효)

  • Cho, Tai-Soon;Lee, Sun-Mee;Kim, Nak-Doo;Huh, In-Hoi;Ann, Hyung-Soo;Kwon, Kwang-Il;Park, Seok-Ki;Shim, Sang-Ho;Shin, Dae-Hee;Park, Dai-Kyu
    • YAKHAK HOEJI
    • /
    • v.41 no.6
    • /
    • pp.802-816
    • /
    • 1997
  • In order to investigate the pharmacological properties of New Woohwangehungsimwon Pill (NWCH). Effects of Woohwangehungsimwon Pill (WCH) and NWCH were compared using various experimental models. In isolated rat aorta, NWCH and WCH showed the relaxation of blood vessels in maximum contractile response to phenylephrine ($10^{-6}$M) without regard to endothelium containing or denuded rings of the rat aorta. Furthermore, the presence of the inhibitors of NO synthase and guanylate cyclase did not affect significantly the relaxative effects of NWCH and WCH. NWCH and WCH inhibited the vascular contractions induced by acethylcholine, prostaglandin endoperoxide or peroxide in a dose-dependent manner. In conscious spontaneously hypertensive rats(SHRs), NWCH and WCH decreased significantly heart rate. These, at high doses, had a negative inotropic effect that was a decrease of LVDP and (-dp/dt)/(+dp/dt) in the isolated perfused rat hearts, and also decreased the contractile force and heart rate in the isolated rat right atria. In excised guinea-pig papillary muscle, these had no effects on parameters of action potential at low doses, whereas inhibited the cardiac, contractility at high doses. Furthermore, these had a significant inhibitory effects on heart acceleration in normotensive rats and SHRs. These results suggested that NWCH and WCH have weak cardiovascular effects, and that there is no significant differences between two preparations.

  • PDF

Effects of Cyclobuxine D on the Derangement Induced by Ischemia and Reperfusion in the Isolated Rat Heart (Ischemia에 의해 유발된 흰쥐의 적출 심장 손상에 대한 Cyclobuxine D의 보호효과)

  • Lee, Jong-Hwoa;Moon, Chang-Kyu;Kwon, Jun-Tack;Cho, Byung-Heon;Kim, Yu-Jae;Kim, Jong-Bae;Kim, Chang-Ho;Cha, Young-Deog;Kim, Young-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.7-12
    • /
    • 1990
  • Cyclobuxine D is a steroidal alkaloid, which was extracted from Buxus microphylla var. koreana Nakai. In our previous studies, we clarified several pharmacological actions of cyclobuxine D: an antiinflammatory action, hypotensive and bradycardiac effects, negative inotropic effects on the several smooth muscles and cardiac muscle. The present study was undertaken to elucidate possible mechanisms by protection of myocardial tells from ischemia and reperfusion induced derangement in cardiac function and metabolism by cyclobuxine D. For this purpose, the isolated rat heart was used. Rat hearts were perfused for 60 min under ischemia conditions in the presence and absence of cyclobuxine D and verapamil, and for 30 min under reperfusion conditions. Ischemia produced a marked decline in contractile force, an increase of resting tension, an immediate release of ATP metabolites and an accumulation of calcium in the left ventricle. Cyclobuxine D (100ng/ml) ameliorated the myocardial injury produced by ischemia.

  • PDF

Analysis of the Relation of the Positive Inotropic Action of Several Cardiotonics and Aconiti Tuber Butanol Fraction to the Frequency of Contraction of Heart Muscle (수축빈도에 따른 수종 강심약물 및 부자 부타놀 분획의 강심효과의 분석)

  • Lim, J.K.;Kim, M.S.;Shin, S.G.;Park, C.W.
    • The Korean Journal of Pharmacology
    • /
    • v.13 no.2
    • /
    • pp.1-9
    • /
    • 1977
  • The effects of extracellular calcium concentrations and several concentration of Aconiti tuber butanol fraction, norepinephrine, ouabain on the force of isometric contraction of isolated atrial preparations obtained from rabbits were determined at $11{\sim}14$ different frequencies of contraction. Qualitatively similar results were obtained in all preparations. In most preparations, rested-state contraction was induced at the range of $120{\sim}400$ seconds stimulation interval. Over the range of intervals from 120 to 10 seconds negative inotropic effect of activation (NIEA) was predominant, so the steady-state contractile force progressively declined. At the intervals of 3 seconds, changes in the cumulated negative and positive isotropic effect of activation (PIEA) practically cancelled each other under steady-state conditions. At the interval from 3 seconds to 0.25 seconds, the additional cumulation of PIEA was greater than that of the NIEA. When the intervals between contractions were shorter than 0.25 seconds, the cumulation of the NIEA was again predominant. The positive inotropic effect of cardiac glycoside resulted at least in large part from increase in the rested-state contraction. No significant effect on the PIEA was found. The decay of the NIEA was apparently greatly accelerated in the presence of high concentration of ouabain, but this may also be a reflection of their action on the state determining the strength of the rested-state contraction. In the case of extracellular calcium concentration increment, the similar results with the ouabain treatment were obtained. Norepinephrine produced more powerful inotropic effect at shorter stimulation interval than long. The rested-state contraction and the decay of the NIEA were not significantly altered in the presence of norepinephrine, but cumulated PIEA and the amount of PIEA produced by each contraction were significantly increased. Aconiti tuber butanol fraction showed similar results with that of norepinephrine. The increment of contractile force at various contraction frequency were dose-responsive in the presence of Aconiti tuber butanol fraction. It is suggested that the positive inotropic effect of Aconiti tuber butanol fraction at various contraction frequency may be due to increase of the cumulation of PIEA and the amount of PIEA produced by each beat.

  • PDF

Effects of Aqua-Acupuncture of Carthami Flos(GV15) on the Changes of Cerebral Hemodynamics in Rats (아문(瘂門)(GV15)의 홍화약침(紅花藥針)이 백서(白鼠)의 뇌혈류역학(腦血流力學) 변동(變動)에 미치는 영향(影響))

  • Ahn, Young-sun;Wei, Tung-shuen;Cho, Myung-rae;Chae, Woo-seok;Yun, Yeo-choong
    • Journal of Acupuncture Research
    • /
    • v.19 no.5
    • /
    • pp.92-111
    • /
    • 2002
  • Objective : Carthami Flos has been used as a herb to promote blood circulation to remove blood stasis in oriental medicine for many centuries, and Amun(GV15) has been used as a meridian point to treat apoplexy etc. To investigate treatment of cerevral vascular disease(CVA) by promoting blood circulation and removing blood stasis(活血化瘀法), we observed the experimental effects and mechanism of auqa-acupunture of Carthami Flos(ACF) injected into GV15 on cerevral hemodynamics and cardiovascular system of rats. Method : Aqua-acupuncture of Carthami Flos(ACF) was injected into GV15, and then we investigated experimental effects and mechanism of ACF on the cerebral hemodynamics[regional cerebral blood flow(rCBF), pial arterial diameter(PAD), meal arterial blood pressure(MABP)] and cardiovascular system[cardiac muscle contractile force(CMF), heart rate(HR)I by pretreatment with methylene blue(MTB) and indomethacin(IDN). The changes in rCBF, MABP, CMF and HR were tested by Laser Doppler Flowmetry(LDF), and the changes in PAD was determinated by video microscopy methods and video analyzer. Results :The results were as follows in normal rats ; The changes of rCBF and PAD were significantly increased by ACF($120{\mu}{\ell}/kg$) in a injected time-dependent manner, but MABP was not changed by ACF. The changes of cardiovascular system were increased by ACF in a injected time-dependent manner. And pretreatment with MTB was significantly inhibited ACE induced increase of rCBF and PAD, and was decreased ACF induced increase of HR. And pretreatment with IDN was increased ACF induced MABP and CMF. And the results were as follows in cerebral ischemic rats ; The changes of rCBF was increased stabilizly by treatment with ACF($120{\mu}{\ell}/kg$) in during the period of cerebral reperfusion, but pretreatment with MTB was increased ACF induced increase of rCBF during the period of cerebral reperfusion. The results were as follows in normal rats ; The changes of rCBF and PAD were significantly increased by ACF($120{\mu}{\ell}/kg$) in a injected time-dependent manner, but MABP was not changed by ACF. The changes of cardiovascular system were increased by ACF in a injected time-dependent manner. And pretreatment with MTB was significantly inhibited ACF induced increase of rCBF and PAD, and was decreased ACF induced increase of HR. And pretreatment with IDN was increased ACF induced MABP and CMF. And the results were as follows in cerebral ischemic rats ; The changes of rCBF was increased stabilizly by treatment with ACF($120{\mu}{\ell}/kg$) in during the period of cerebral reperfusion, but pretreatment with MTB was increased ACF induced increase of rCBF during the period of cerebral reperfusion Conclusions : In conclusion, ACF causes a diverse response of rCBF, PAD an HR, and action of ACF is mediated by cyclic GMP. I suggested that ACF has an anti-ischemic effect through the improvement of crebral hemodynamics in a transient cerebral ischemia.

  • PDF