• Title/Summary/Keyword: carbonation technology

Search Result 155, Processing Time 0.026 seconds

Manufacturing properties of γ-dicalcium silicate with synthetic method

  • Chen, Zheng-xin;Lee, Han-seung;Cho, Hyeong-Kyu
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.spc1
    • /
    • pp.109-112
    • /
    • 2019
  • γ-dicalcium silicate(γ-C2S) is known as a polymorphism of belite. Due to its high CO2 fixed capacity and the low CO2 emission production process, γ-C2S has attracted more and more attention of researchers. For the further development of application of γ-C2S in building construction industry. In this study, we aim to investigate the method for synthesizing high purity of γ-C2S. The influence of different raw materials and calcination temperatures on the purity of γ-C2S was also evaluated. Several Ca bearing materials were selected as the calcium source, the materials which' s main component is SiO2 were used as the silicon source. Raw materials were mixed and were calcined under different temperatures. The results reveal that the highest purity could be obtained using Ca(OH)2 and SiO2 powder as raw materials. And for the practical application, a relatively economic synthesis method using natural mineral materials- limestone and silica sand as raw materials was developed, by this method, the purity of the synthetic γ-C2S was 77.6%.

Evaluation on the Shrinkage and Durability of Cementless Alkali-Activated Mortar (무(無)시멘트 알칼리 활성(活性) 모르타르의 수축(收縮) 및 내구성(耐久性) 평가(評價))

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa;Kang, Hyun-Jin
    • Resources Recycling
    • /
    • v.20 no.3
    • /
    • pp.40-47
    • /
    • 2011
  • In this study, we investigated the strength, shrinkage and durability of alkali-activated mortar using blast furnace slag only, and admixed with blast-furnace slag and fly ash as cementious materials in oder to develop cementless alkali-activated concrete. In order to compare with the alkali-activated mortar, the normal mortar using ordinary portland cement was also test. In view of the results, we found out that strength development, the resistance to shrinkage and freezing-thawing of the cementless alkali-activated mortar have better than the mortar using ordinary portland cement. Especially, using the combined with blast furnace slag and fly ash develop high strength of above 60 MPa, reduce shrinkage of about 40% and improve freezing-thawing durability of approximately 20%, but promote the velocity of carbonation of 2~3 times.

A Study on the Modified Zeolite for the Removal of Calcium Ion in a Potassium Ion Coexistence Solution (칼륨이온 공존 수용액 내 칼슘이온 제거를 위한 제올라이트 개질 연구)

  • Lee, Ye Hwan;Kim, Jiyu;Lee, Ju-Yeol;Park, Byung-Hyun;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.726-730
    • /
    • 2019
  • The removal of calcium ions using zeolite to solve problems of the CaCO3 manufacturing process using cement kiln dust was investigated. To do so, a modified zeolite was employed and experiments were conducted to select the optimal zeolite type considered the binding cation and structure, evaluate the removal performance of calcium ions, the influence of the type and concentration of the modifying solution, and the removal selectivity when K coexists. Among five zeolites, 13X zeolite was found to have the best calcium ion removal performance, and it was confirmed that the removal performance was enhanced when KCl was used as a modifying solution instead of NaCl. This study is expected to be the basis for the solution of carbonation process and high concentration of KCl recovery technology.

Strength Development and Durability of Geopolymer Mortar Using the Combined Fly ash and Blast-Furnace Slag (플라이애시와 고로슬래그 미분말을 혼합 사용한 지오폴리머 모르타르의 강도발현 및 내구성)

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Lee, Jang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.35-41
    • /
    • 2013
  • In this study, we investigated the strength development and durability of geopolymer mortar using blast furnace slag only, and admixed with blast-furnace slag and fly ash as cementious materials in oder to develop cementless geopolymer concrete. In order to compare with the geopolymer mortar, the normal mortar using ordinary portland cement was also test. In view of the results, we found out that strength development, the resistance to freezing-thawing of the geopolymer mortar have better than the mortar using ordinary portland cement. Especially, using the combined with blast furnace slag and fly ash develop high strength of above 60 MPa, and improve the resistance of freezing-thawing of approximately 20%, but promote the velocity of carbonation of 2.2~3.5 times.

Power spectral density method performance in detecting damages by chloride attack on coastal RC bridge

  • Mehrdad, Hadizadeh-Bazaz;Ignacio J., Navarro;Victor, Yepes
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.197-206
    • /
    • 2023
  • The deterioration caused by chloride penetration and carbonation plays a significant role in a concrete structure in a marine environment. The chloride corrosion in some marine concrete structures is invisible but can be dangerous in a sudden collapse. Therefore, as a novelty, this research investigates the ability of a non-destructive damage detection method named the Power Spectral Density (PSD) to diagnose damages caused only by chloride ions in concrete structures. Furthermore, the accuracy of this method in estimating the amount of annual damage caused by chloride in various parts and positions exposed to seawater was investigated. For this purpose, the RC Arosa bridge in Spain, which connects the island to the mainland via seawater, was numerically modeled and analyzed. As the first step, each element's bridge position was calculated, along with the chloride corrosion percentage in the reinforcements. The next step predicted the existence, location, and timing of damage to the entire concrete part of the bridge based on the amount of rebar corrosion each year. The PSD method was used to monitor the annual loss of reinforcement cross-section area, changes in dynamic characteristics such as stiffness and mass, and each year of the bridge structure's life using sensitivity equations and the linear least squares algorithm. This study showed that using different approaches to the PSD method based on rebar chloride corrosion and assuming 10% errors in software analysis can help predict the location and almost exact amount of damage zones over time.

An Investigation on the Quality of High-Strength Shotcrete and the Long Term Durability using Combined Deterioration Test (고강도 숏크리트의 품질평가와 복합열화시험을 통한 장기내구성 검토)

  • Ma, Sang-Joon;Kim, Dong-Min;Choi, Jae-Seok;Ahn, Kyung-Chul;Kim, Sun-Myung;Ko, Jin-Kon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.906-915
    • /
    • 2006
  • In this study, Field test was performed using high-quality additions and accelerators to obtain the improvement of the strength on domestic shotcrete and quality test based on EFNARC was performed. In addition, Deterioration test that combined the Freezing-thawing and Carbonation was also performed in order to investigate a long-term durability of high-strength shotcrete. As a result of field test, a promotion ratio of early strength is $90\sim97%$ in case of using alkali-free accelerators. And a compressive strength of shotcrete using Micro-silica fume was $45.2\sim55.8MPa$ and the flexible strength was $5.01\sim6.66MPa$, so a promotion ratio of strength was $37\sim79%$, $17\sim61%$ respectively. It was showed that increment effect of strength by the Micro-silica fume replacement of $7.5\sim10%$ for cement mass was remarkable. It was also realized that application of Micro-silica fume to shotcrete reduced deterioration and improved a long-term durability of shotcrete.

  • PDF

Development of Testing and Analysis Model for Evaluation of Absorbed Water Diffusion into Concrete (콘크리트 흡수 수분확산계수 산정을 위한 실험 및 수치해석 모델 개발)

  • Park, Dong-Cheon;Ahn, Jae-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.371-378
    • /
    • 2011
  • Concrete is affected by various deterioration factors, such as $CO_2$ and chloride ions from the sea, which cause carbonation and salt attack on concrete. These deterioration phenomena cause steel corrosion in RC structures. Although a great deal of research has been carried out in this area thus far, it is difficult to know the point at which corrosion will occur to a reinforced bar. As the diffusion of deterioration factors depends on the water content in concrete, it is imperative to assess the condition of absorbed water content. A mass measuring method was applied to calculate the absorbed water diffusion coefficient, as well as non-linear finite element method(FEM) analysis. As a result, it was found that W/C and unit water content in concrete mixture affect the diffusion coefficient decision.

Mineralogical Analysis of Calcium Silicate Cement according to the Mixing Rate of Waste Concrete Powder (폐콘크리트 미분말 치환율에 따른 이산화탄소 반응경화 시멘트의 광물상 분석)

  • Lee, Hyang-Sun;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.181-191
    • /
    • 2024
  • In the realm of cement manufacturing, concerted efforts are underway to mitigate the emission of greenhouse gases. A significant portion, approximately 60%, of these emissions during the cement clinker sintering process is attributed to the decarbonation of limestone, which serves as a fundamental ingredient in cement production. Prompted by these environmental concerns, there is an active pursuit of alternative technologies and admixtures for cement that can substitute for limestone. Concurrently, initiatives are being explored to harness technology within the cement industry for the capture of carbon dioxide from industrial emissions, facilitating its conversion into carbonate minerals via chemical processes. Parallel to these technological advances, economic growth has precipitated a surge in construction activities, culminating in a steady escalation of construction waste, notably waste concrete. This study is anchored in the innovative production of calcium silicate cement clinkers, utilizing finely powdered waste concrete, followed by a thorough analysis of their mineral phases. Through X-ray diffraction(XRD) analysis, it was observed that increasing the substitution level of waste concrete powder and the molar ratio of SiO2 to (CaO+SiO2) leads to a decrease in Belite and γ-Belite, whereas minerals associated with carbonation, such as wollastonite and rankinite, exhibited an upsurge. Furthermore, the formation of gehlenite in cement clinkers, especially at higher substitution levels of waste concrete powder and the aforementioned molar ratio, is attributed to a synthetic reaction with Al2O3 present in the waste concrete powder. Analysis of free-CaO content revealed a decrement with increasing substitution rate of waste concrete powder and the molar ratio of SiO2/(CaO+SiO2). The outcomes of this study substantiate the viability of fabricating calcium silicate cement clinkers employing waste concrete powder.

Proposal of a Pilot Plant (2T/day) for Solid Fuel Conversion of Cambodian Mango Waste Using Hybrid Hydrothermal Carbonization Technology (하이브리드 수열탄화기술을 이용한 캄보디아 망고 폐기물 고형연료화 실증플랜트 (2T/day) 제안)

  • Han, Jong-il;Lee, Kangsoo;Kang, Inkook
    • Journal of Appropriate Technology
    • /
    • v.7 no.1
    • /
    • pp.59-71
    • /
    • 2021
  • Hybrid hydrothermal carbonization (Hybrid HTC) technology is a proprietary thermochemical process for two or more organic wastes.The reaction time is less than two hours with temperature range 180~250℃ and pressure range 20~40bar. Thanks to accumulation of the carbon of the waste during Hybrid HTC process, the energy value of the solid fuel increases significantly with comparatively low energy consumption. It has also a great volume reduction with odor removal effect so that it is evaluated as the best solid fuel conversion technology for various organic wastes. In this study of the hybrid hydrothermal carbonization, the effect on the calorific value and yield of Cambodian mango waste were evaluated according to changes in temperature and reaction time. Through the study, parameter optimization has been sought with improving energy efficiency of the whole plant. It is decomposed in the Hydro-Carbonation Technology to Generate Gas. At this time, it is possible to develop manufacturing and production technologies such as hydrogen (H2) and methane (CH4). Based on the results of the study, a pilot plant (2t/day) has been proposed for future commercialization purpose along cost analysis, mass balance and energy balance calculations.

Applicability analysis of carbondioxide conversion capture materials produced by desulfurization gypsum for cement admixture (시멘트 혼합재로서 정유사 탈황석고를 활용하여 제조한 탄산화물의 적용성 분석)

  • Hye-Jin Yu;Young-Jun Lee;Sung-Kwan Seo;Yong-Sik Chu;Woo-Sung Yum
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.54-60
    • /
    • 2023
  • In this study, microstructure and basic property analysis of DG (Desulfurization gypsum) and CCMs (Carbondioxide conversion capture materials) made by reacting CO2 with DG were conducted to analyze applicability as a cement admixture. The main crystalline phases of DG were CaO and CaSO4, and CCMs were CaSO4, CaCO3, Ca(OH)2 and CaSO4·H2O. As a result of particle size analysis, the difference in average particle sizes between the two materials was about 7 ㎛. No major heavy metals were detected in the CCMs, and as a result o f TGA, the CO2 decomposition of CCMs was more than twice as high as that of DG. Therefore, it was judged that CCMs could be used as a cement admixture through optimization of manufacturing conditions. As a results of measuring the strength behavior of DG and CCMs mixture ratios, the long-term strength of CCMs-mixed mortar was higher, and this is due to the filler effect of CaCO3 in CCMs.