• Title/Summary/Keyword: carbonate reaction

Search Result 395, Processing Time 0.032 seconds

Fabrication and thermal stability of flower-like CeO2 with high surface area via anisotropic crystallization of carbonate precipitation (탄산염 침전 전구체의 결정 이방성 제어를 통한 고 비표면적 flower-like CeO2 분말의 제조 및 고온 안정성 평가)

  • Kim, Hanbit;Shin, Tae Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.4
    • /
    • pp.160-166
    • /
    • 2019
  • Cerium oxide ($CeO_2$, often called as Ceria) is one of the valuable rare earth oxide materials, which has been widely used for high temperature applications such as solid oxide fuel cells, automotive three-way catalysts and oxygen storage capacity. Considering those application, it is important to improve high redox and thermal stability with high surface morphology because the high surface area of $CeO_2$ could improve the catalytic reactivity at high temperature conditions. Herein we successfully fabricated hierarchical flower-like $CeO_2$ deposited via controlling pathway of precipitation reaction to supply carbonate ion lead to the flower-like morphology. The hexagonal lattice system of precipitated precursor shows better thermal stability then orthorhombic one during thermal cycling condition.

Carbonic Anhydrase Mimicry for Carbon Dioxide Fixation and Calcium Carbonate Mineralization (탄산탈수효소 모사를 이용한 이산화탄소 고정화 및 탄산칼슘 합성)

  • Sahoo, Prakash C.;Jang, Young Nam;Chae, Soo Chun;Lee, Seung Woo
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.201-208
    • /
    • 2013
  • Copper (II) and Nickel (II) mimic complexes of enzyme carbonic anhydrase were evaluated under ambient condition for carbon dioxide capture and conversion process. The synthesized complexes were characterized by ATR-FTIR and UV-DR spectroscopy. It was found that all the complexes have biomimetic activity towards $CO_2$ using para-nitrophenyl acetate (p-NPA) hydrolysis as the model reaction. Interestingly, the proper geometry obtained by the restricted orientation of tripodal N atoms in Cu (II) complex of 2,6-bis(2-benzimidazolyl) pyridine showed the highest activity (1.14 au) compared to others. The $CO_2$ bio-mineralization to $CaCO_3$ was carried out via in-vitro crystallization approach. Results indicate that the biomimetic complexes have a role in determining $CaCO_3$ morphology. The present observations establish a qualitative insight for the design of improved small-molecule catalysts for carbon capture.

Development of Independent Sprinkler for Fire Safety (소방안전을 위한 독립 스프링클러 개발)

  • Yun, Hae-Yong;Kim, Seon-Yeop;Kim, Ho-Chan;Park, In-Beck
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.124-128
    • /
    • 2017
  • Sprinklers are a necessary device for the early suppression of fires to prevent large fires. The installation has been obligatory for certain buildings recently through the digestion method. In an aging building, it is difficult to find sprinklers, because of their significant cost, long installation times, and they require installation by experts. That is why we are able to install all, was designed with enough independent integrated sprinklers with fire-extinguishing capabilities. The designed sprinklers are fitted with a conventional sprinkler head in a container of 20cm * 20cm * 10cm. Inside the container and potassium carbonate, which warms the rubber material and the plate line by pressing the potassium carbonate, the line weight is a 5kg pressing plate at the entrance at the pressure of 0.5Mpa when operating. The glass sprinkler valve blocking the entrance at about $68^{\circ}C$ is operated open. At this time, the potassium out of the digestive fire to combustible materials and heat off a chain reaction.

Quantitative analysis of Spirulina platensis growth with CO2 mixed aeration

  • Kim, Yong Sang;Lee, Sang-Hun
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.216-222
    • /
    • 2018
  • The growth characteristics of Spirulina platensis were investigated using four photo-bioreactors with $CO_2$-mixed air flows. Each reactor was operated under a specific condition: 3% $CO_2$ at 50 mL/min, 3% $CO_2$ at 150 mL/min, 6% $CO_2$ at 50 mL/min, and 6% CO2 at 150 mL/min. The 3% $CO_2$ at 150 mL/min condition produced the highest algal growth rate, while the 6% $CO_2$ at 150 mL/min conditioned produced the lowest. The algal growth performance was suitably assessed by the linear growth curve rather than the exponential growth. The medium pH decreased from 9.5 to 8.7-8.8 (3% $CO_2$) and 8.4-8.5 (6% $CO_2$), of which trends were predicted only by the pH-carbonate equilibrium and the reaction kinetics between dissolved $CO_2$ and $HCO_3{^-}$. Based on the stoichiometry between the nutrient amounts and cell elements, it was predicted that depleted nitrogen (N) at the early stage of the cultivation would reduce the algal growth rates due to nutrient starvation. In this study, use of the photobioreactors capable of good light energy distribution, proper ranges of $CO_2$ in bubbles and medium pH facilitated production of high amounts of algal biomass despite N limitation.

Solvent-free, Soap-free Synthesis Process of Methyl Fructoside Oleic Acid Polyester (무용매 , 무유화제 공정에 의한 메틸프룩토시드 올레산 폴리에스테르의 합성)

  • Heo, Joo-Hyung;Kim, Chong-Tai;Kim, Hae-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.45-56
    • /
    • 1998
  • Methyl fructoside oleic acid polyester(MFPE), fructose-based sugar polyester, was synthesized by solvent-free, soap-free transesterification of methyl oleate with methyl fructoside(MF) as a sugar starting material in the presence of conventional potassium carbonate basic catalyst. Methyl fructoside was found to be an effective sugar starting material, because of its low softning point, high heat stability, high miscibility, and high reactivity than other sugars. Yield 98% of purified MFPE based on initial weight of MF was obtained at 1:5 of the molar ratio of methyl fructoside to methyl oleate, 2%(w/w) of potassium carbonate catalyst content, 20${\sim}$200mmHg of reduced pressure and $180^{\circ}C$ of reaction temperature. MFPE structure was confirmed by infrared and proton nuclear magnetic resonance spectroscopy. Physical properties of methyl of fructoside oleic acid polyester such as viscosity, HLB, solubility, color, refractive index, specific gravity, and density were similar to physical properties of sucrose polyesters(SPE) and vegetable oils. Then, it was elucidated that MFPE was sufficient to replace the SPE and conventional oils.

Study on liquid carbonation using the recycling water of ready-mixed concrete (레미콘회수수를 이용한 액상탄산화에 관한 연구)

  • Lim, Yun-Hui;Lee, Ju-Yeol;Choi, Chang-Sik;Hong, Bum-Ui;Park, Jin-Won;Lee, Dae-Young;Park, Byung-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.770-778
    • /
    • 2013
  • In this study, a liquid carbonation method was applied for producing precipitate calcium carbonate by liquid-liquid reaction. We recycled the recycling water of ready-mixed concrete, one of construction waste for use source of carbonate ion. A supernatant separated from the recycling water of ready-mixed concrete, as a result of ICP analysis of a cation, $Ca^{2+}$ was contained up to 1100 ppm. We used MEA as a $CO_2$ absorbent for the liquid carbonation. A precipitate $CaCO_3$ was produced at more than MEA 20 wt%. The precipitate $CaCO_3$ as a final product was separated and dried. The result of XRD was confirmed the generation of $CaCO_3$ to calcite structure.

Catalytic Performance of Ionic Liquids for the Cycloaddition of Carbon Dioxide and Butyl Glycidyl Ether (부틸글리시딜에테르와 이산화탄소의 부가반응에 대한 이온성 액체의 촉매 성능 고찰)

  • Park, Dae-Won;Ju, Hye-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.469-476
    • /
    • 2008
  • The synthesis of cyclic carbonate from butyl glycidyl ether (BGE) and carbon dioxide was performed in the presence of three different types of ionic liquid : quarternary ammonium salt, alkyl pyridinium salt, and alkylimidazolium salt. Ionic liquids of different alkyl groups ($C_3$, $C_4$, $C_6$ and $C_8$) and anions ($Cl^-$, $Br^-$ and $I^-$) were used for the reaction which was carried out in a batch autoclave reactor at $60{\sim}120^{\circ}C$. The catalytic activity was increased with increasing alkyl chain length in the order of $C_3$ < $C_4$ < $C_6$. But the ionic liquid with longer alkyl chain length ($C_8$) decreased the conversion of BGE because it is too bulky to form an intermediate with BGE. For the counter anion of the ionic liquid catalysts, the BGE conversion decreased in the order $Cl^-$ > $Br^-$ > $I^-$.

Morphological Analysis of Engineered PCC by Gas-Liquid Mixing Conditions (기체-액체 혼합조건에 따른 Engineered PCC의 형태학적 분석)

  • Lee, Tai-Ju;Seo, Jin-Ho;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.113-120
    • /
    • 2011
  • Precipitated calcium carbonate(PCC), particularly calcite crystal, is extensively used as a pigment, filler or extender in various industries such as paper, paint, textile, detergents, adhesives, rubber and plastics, food, cosmetics, and biomaterials. PCC is conventionally produced through the gas-liquid carbonation process, which consists on bubbling gaseous $CO_2$ through a concentrated calcium hydroxide slurry. This study is aimed to find some factors for controlling the morphology of engineered PCC in lab-scaled mixing batch. The experimental designs were based on temperature variables, $Ca(OH)_2$ concentration, $CO_2$ flow rate, and electrical conductivity. The model of engineered PCC morphology was finally controlled by adjustment of electrical conductivity(6.0~7.0 mS/cm) and $Ca(OH)_2$ concentration(10 g/L). Orthorhombic calcite crystals were mostly created at high concentration and electrical conductivity conditions because the increased ratio of $Ca^{2+}$ and $CO{_3}^{2-}$ ions affects the growth rate of orthorhombic faces. Excess calcium spices were contributed to the growth of faces in calcium carbonate crystal, and the non-stoichiometric reaction was occurred between $Ca^{2+}$ and $CO{_3}^{2-}$ ions during carbonation process.

A Novel Method for Calcium Hardness Control of Closed OCC Recycling System

  • Ow, Say-Kyoun;Shin, Jong-Ho;Song, Bong-Keun;Ryu, Jeong-Yong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.164-171
    • /
    • 1999
  • A new technique for recycling process water was developed in order to reduce the calcium hardness of the closed OCC recycling system. Calcium ions present in the white water were precipitated as calcium carbonate by a reaction with sodium carbonate and the CaCO$_3$precipitates were easily removed from the system by a dissolved air flotation(DAF) method. After the DAF stage, CO$_2$-gas was purged into the water because the pH of Na$_2$CO$_3$-treated white water was reduced to neutral by CO$_2$gas. Since CaCO$_3$precipitate tends to stick onto the fine fiber surface and then is selectively removed from the water, a proper amount of suspended solid in the process water acts as an important factor in deciding the removal efficiency. By the application of Na$_2$CO$_3$addition - DAF - CO$_2$purging to the short circulated white water the calcium hardness was significantly reduced by 92% and more. The removal of calcium ions with fine fibers led to drainage improvement, reduction of fresh water consumption, and enhanced efficiency of wet-end chemicals.

Microwave-assisted Synthesis of 2H-Benzo[b][1,4]oxazin-3(4H)-ones and 1H-Pyrido[2,3-b][1,4]oxazin-2(3H)-ones via Smiles Rearrangement

  • Hua, Zuo;Kam, Kyeong-Hee;Kwon, Hee-Jin;Meng, Lijuan;Ahn, Chul-Jin;Won, Tae-Jin;Kim, Tae-Hyun;Reddy, Ch. Raji;Chandrasekhar, S.;Shin, Dong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1379-1385
    • /
    • 2008
  • Highly efficient synthesis of substituted benzo[1,4]oxazin-3-ones and pyrido[1,4]oxazin-2-ones under microwave irradiation via Smiles rearrangement is reported. Substituted benzo[1,4]oxazin-3-ones and pyrido[1,4]oxazin-2-ones were obtained by treatment of substituted 2-chlorophenols or 2-chloropyridols with N-substituted 2-chloroacetamide in the presence of potassium carbonate in MeCN and subsequent exposure to cesium carbonate in DMF. All the reactions which take 2-10 hours under conventional condition were completed successfully within a few minutes under microwave irradiation giving moderate to excellent yields.