• 제목/요약/키워드: carbon-epoxy composite

검색결과 620건 처리시간 0.028초

탄소 섬유강화 복합재료의 중력 낙하 충격으로 인한 손상 평가 (Drop-weight impact damage evaluation for carbon fiber/epoxy composite laminates)

  • Sohn, Min-Seok;Hu, Xiao-Xhi;Ki, Jang-Kyo;Hong, Soon-Hyung
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.89-92
    • /
    • 2001
  • Drop weight impact tests were performed to investigate the impact behavior of carbon fiber/epoxy composite laminates reinforced by short fibers and other interleaving materials. Characterization techniques, such as cross-sectional fractography and scanning acoustic microscopy, were employed quantitatively to assess the internal damage of some composite laminates. Scanning electron microscopy was used to observe impact damage and fracture modes on specimen fracture surfaces. The results show that composite laminates experience various types of fracture; delamination, intra-ply cracking, matrix cracking and fiber breakage depending on the interlayer materials. Among the composite laminates tested in this study, the composites reinforced by Zylon fibers showed very good impact damage resistance with medium level of damage, while the composites interleaved by poly(ethylene-co-acrylic acid) (PEEA) film is expected to deteriorate the bulk strength due to the reduction of fiber volume fraction, even though the damaged area is significantly reduced.

  • PDF

해수가 흡수된 Carbon-Epoxy 적층복합재의 압축특성에 대한 연구- 정수압력 영향 (A Study on the Compressive Properties of Seawater-absorbed Carbon-Epoxy Composites - Hydrostatic Pressure Effect)

  • 이지훈;이경엽;김현주
    • 한국해안해양공학회지
    • /
    • 제16권4
    • /
    • pp.191-195
    • /
    • 2004
  • 본 논문에서는 고분자기지 복합재의 해저환경에서의 압축특성에 대한 영향을 연구하였다. 실험에 사용된 시편은 두꺼운 두께를 갖는 적층된 Carbon-Epoxy 복합재를 사용하였으며, 충분한 해수 함유를 위해 시편을 해수에 13개원 동안 침지시켰다. Carbon-Epoxy 복합재의 포화 해수함유량은 시편무게의 약 1.2%였다. 해저환경을 모사하기 위해 네 경우의 정수압력(0.1, 100, 200, 270 MPa)을 적용하여 실험하였다. 실험결과로써 압축탄성계수는 정수압력이 0.1 MPa에서 200 MPa로 증가함에 따라 약 10%정도 증가하였다. 또한 압력을 270 MPa로 증가시킴에 따라 압축탄성계수는 2.3%가 더 증가하였다. 압축파괴강도와 압축파괴변형률은 정수압력이 증가함에 따라 선형적으로 증가함을 알 수 있었다. 정수압력이 0.1 MPa에서 270 MPa로 증가함에 따라 압축파괴강도는 약28%가 증가하였고 압축파괴변형률은 약 8.5%의 증가를 나타내었다.

Subscale Main Wing Design and Manufacturing of WIG Vehicle Using Carbon Fiber Composites

  • Park, Hyun-Bum
    • International Journal of Aerospace System Engineering
    • /
    • 제4권2호
    • /
    • pp.1-4
    • /
    • 2017
  • This work dealt with design and manufacturing of WIG vehicle wing using carbon/epoxy composite materials. In this study, structural design and analysis of carbon composite structure for WIG craft were performed. Firstly, structural design requirement of wing for WIG vehicle was investigated. After structural design, the structural analysis of the wing was performed by the finite element analysis method. It was performed that the stress, displacement and buckling analysis at the applied load condition. And also, manufacturing of subscale wing using carbon/epoxy composite materials was carried out. After structural test of target structure, structural test results were compared with analysis results. Through the structural analysis and test, it was confirmed that the designed wing structure is safety.

마이크로파에서의 카본 블랙/에폭시 복합재료의 유전율 모사 (Simulation of Complex Permittivity of Carbon Black/Epoxy Composites at Microwave Frequency Band)

  • 김진봉;김태욱;김천곤
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.155-160
    • /
    • 2004
  • This paper presents a study on the permittivities of the carbon black/epoxy composite at microwave frequency. The measurements were performed at the frequency band of $1 GHz\~18GHz$. The results show that the complex permittivities of composites depend strongly on the natures and concentrations of the carbon black dispersion. The frequency spectrums of dielectric constants and ac conductivities of composites show the good conformities with descriptions of the percolation theory. The carbon black concentration dependencies do not have conformities with the descriptions of percolation theory and there is no peculiar concentration like percolation threshold, on that concentration, the conductivity of composite jumps up. A new scheme, that is a branch of Lichtenecker-Rother formula, is proposed to obtain a mixing law to describe the complex permittivities of the composites as function frequency and concentration of carbon black.

  • PDF

3차원 방향으로 극소 열팽창계수를 갖는 탄소/에폭시 복합재료 격자 구조물 (Carbon/Epoxy Grid Structure with Near Zero CTE in 3-D Direction)

  • 이형주;김창근;윤광준;박훈철
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.272-276
    • /
    • 1999
  • The present paper proposes design and manufacturing methods of the carbon/epoxy square grid structure with near zero-CTE in three geometrical principal directions. Bonding strength of the grid structure is examined for different bonding methods. Numerical examples show that maximum displacement of the composite grid structure is almost zero comparing with that of aluminum grid structure with same dimension under thermal loading.

  • PDF

탄소 섬유/에폭시 복합 재료의 마찰 및 마멸 성질에 미치는 습도 및 구조의 영향 (Effects of Humidity and Structure on Friction and Wear Properties of Carbon Fiber/Epoxy Composites)

  • 심현해;권오관;윤재륜
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1990년도 제12회 학술강연회초록집
    • /
    • pp.63-68
    • /
    • 1990
  • Friction and wear behavior of a unidirectional high modulus carbon fiber reinforced epoxy composite exposed to high and low humidity was experimentally examined with various sliding speeds. The results show that the moisture at the sliding surface greatly influences friction and wear properties of the composite. It is also discoverd that the difference in friction and wear behavior between samples with different fiber orientations is mainly due to the anisotropic properties caused by the microstructure of oriented graphite crystals in the carbon fibers and the macrostructure of fiber orientation in the matrix.

  • PDF

탄소 섬유/에폭시 복합 재료의 마찰 및 마멸 성질에 미치는 습도 및 구조의 영향 (Effects of Humidity and Structure on Friction and Wear Properties of Carbon Fiber/Epoxy Composites)

  • 심현해;권오관;윤재륜
    • Tribology and Lubricants
    • /
    • 제6권2호
    • /
    • pp.88-93
    • /
    • 1990
  • Friction and wear behavior of a unidirectional high modulus carbon fiber reinforced epoxy composite exposed to high and low humidity was experimentally examined with various sliding speeds. The results show that the moisture at the sliding surface greatly influences friction and wear properties of the composite. It is also discoverd that the difference in friction and wear behavior between samples with different fiber orientations is mainly due to the anisotropic properties caused by the microstructure of oriented graphite crystals in the carbon fibers and the macrostructure of fiber orientation in the matrix.

선삭가공에 있어서 탄소섬유 에폭시 복합재료의 절삭 특성 (Machinability of Carbon Fiber Epoxy Composites in Turning)

  • 김기수;이대길;곽윤근;남궁석
    • 한국정밀공학회지
    • /
    • 제8권1호
    • /
    • pp.63-73
    • /
    • 1991
  • Carbon fiber epoxy composite materials are widely used in the structures of aircrafts, robots and other machines because of their high specific strength, high specific stiffness and high damping. In order for the composite materials to be used in aircraft structures or machine elements, accurate surfaces for bearing mounting or joints must be provided, which require precise machining. In this paper, the machinability of the carbon fiber epoxy composite materials in turning was experimentally investigated. The cutting mechanism and the Taylor Tool Wear constants were determined and the surface roughness was measured w.r.t. cutting speeds and feed rates.

  • PDF

Effect of fiber-matrix adhesion on the fracture behavior of a carbon fiber reinforced thermoplastic-modified epoxy matrix

  • Carrillo-Escalante, H.J.;Alvarez-Castillo, A.;Valadez-Gonzalez, A.;Herrera-Franco, P. J.
    • Carbon letters
    • /
    • 제19권
    • /
    • pp.47-56
    • /
    • 2016
  • In this study, the fracture behavior of a thermoplastic-modified epoxy resin reinforced with continuous carbon fibers for two levels of fiber-matrix adhesion was performed. A carbon fiber with commercial sizing was used and also treated with a known silane, (3-glycidoxy propyl trimethoxysilane) coupling agent. Toughness was determined using the double cantilever test, together with surface analysis after failure using scanning electron microscope. The presence of polysulfone particles improved the fracture behavior of the composite, but fiber-matrix adhesion seemed to play a very important role in the performance of the composite material. There appeared to be a synergy between the matrix modifier and the fiber-matrix adhesion coupling agent.

고속충격을 받는 Carbon/Epoxy 복합재 적층판의 충격체 질량손실을 고려한 흡수에너지 예측 (The Absorbed Energy of Carbon/Epoxy Composite Laminates Subjected to High-velocity impact in Considering the Loss of Projectile Mass)

  • 조현준;김인걸;이석제;김영아;우경식
    • Composites Research
    • /
    • 제26권6호
    • /
    • pp.349-354
    • /
    • 2013
  • 본 논문에서는 Carbon/Epoxy 복합재 적층판에 대하여 실사격 실험을 수행하였으며, 복합재 적층판의 흡수에너지를 예측하기 위한 개선된 방법을 제시하였다. 고속충격실험 과정에서 충격체의 질량손실을 고속카메라를 통하여 거시적으로 확인하였으며, 따라서 이를 고려하여 복합재 적층판의 흡수에너지를 계산하였다. 고속충격을 받는 복합재 적층판의 흡수에너지를 예측하기 위한 모델을 제시하였으며, 복합재 적층판의 흡수에너지는 크게 정적에너지와 동적에너지로 분류하였다. 정적에너지 계산은 섬유의 파손과 정적 탄성에너지와 관련 있는 준정적 관통실험식을 통해 구한 관통에너지를 사용하였다. 동적에너지는 변형되는 시편의 운동에너지와 손실된 파편 질량들의 운동에너지로 나뉠 수 있다. 최종적으로 충격체 질량손실을 고려하여 예측된 흡수에너지와 실험결과를 비교/분석하였다.