• 제목/요약/키워드: carbon-dioxide emissions

검색결과 458건 처리시간 0.022초

정량적 위험성평가를 위한 배출 오염물질 분포 예측 (Prediction of Pollutant Emission Distribution for Quantitative Risk Assessment)

  • 이의주
    • 한국안전학회지
    • /
    • 제31권4호
    • /
    • pp.48-54
    • /
    • 2016
  • The prediction of various emissions from coal combustion is an important subject of researchers and engineers because of environmental consideration. Therefore, the development of the models for predicting pollutants very fast has received much attention from international research community, especially in the field of safety assessment. In this work, response surface method was introduced as a design of experiment, and the database for RSM was set with the numerical simulation of a drop tube furnace (DTF) to predict the spatial distribution of pollutant concentrations as well as final ones. The distribution of carbon dioxide in DTF was assumed to have Boltzman function, and the resulted function with parameters of a high $R^2$ value facilitates predicting an accurate distribution of $CO_2$. However, CO distribution had a difference near peak concentration when Gaussian function was introduced to simulate the CO distribution. It might be mainly due to the anti-symmetry of the CO concentration in DTF, and hence Extreme function was used to permit the asymmetry. The application of Extreme function enhanced the regression accuracy of parameters and the prediction was in a fairly good agreement with the new experiments. These results promise the wide use of statistical models for the quantitative safety assessment.

The Relative Importance of Indoor and Outdoor Sources for Determining Indoor Pollution Concentrations in Homes in Seoul, South Korea

  • Lee, Jae Young;Kim, Kyunghwan;Ryu, Sung Hee;Kim, Chang Hyeok;Bae, Gwi-Nam
    • Asian Journal of Atmospheric Environment
    • /
    • 제12권2호
    • /
    • pp.127-138
    • /
    • 2018
  • This study measured indoor and outdoor levels of hydrocarbon volatile organic compounds (VOCs), such as benzene, toluene, ethylbenzene, and xylene isomers (collectively referred to as BTEX), as well as 13 carbonyl compounds, at 20 homes in Seoul, South Korea. Along with the sampling of BTEX and carbonyls, indoor concentrations of the air pollutants nitrogen oxide (NO) and carbon dioxide ($CO_2$) were also measured at each home. These measurements were used to understand the characteristics of BTEX and carbonyls by calculating the various ratios and correlation coefficients between measured contaminant levels. We found that carbonyls were mostly originated from indoor sources, while BTEX were originated from both indoor and outdoor sources. A high correlation between indoor levels of NO and BTEX indicated that traffic emissions were also an important sources of BTEX.

외피 친환경 성능평가 II: 광선반, RetroLux (Performance Assessment of Building Envelopes II: LightShlef, RetroLux)

  • 김덕우;박철수
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.83-90
    • /
    • 2009
  • As a series of 'Performance Assessment of Building Envelopes I: Double Skin Facade', three types (interior, exterior, mixed (int.&ext.)) of lightshelves and RetroLux were examined in terms of $CO_2$ emissions. It is shown that the exterior lightshelf could achieve the most energy savings (9.6-38.7%) in general office buildings due to blocking solar radiation before entering the indoor space. However, the interior lightshelf is the worst (1.4-5.2%) among three of them. The RetroLux has two components: (1) sun-reflector (first louver component), (2) light shelf for improving daylight induction (second louver component). Due to these two components, solar radiation from windows is filtered depending on seasonal variation (solar altitude). Therefore, the RetroLux can reduce 18.0-27.9% of annual energy consumption (both cooling and heating), and $552-3,290Won/m^2{\cdot}yr$ of operation cost is saved.

  • PDF

Pilot급 산소 MILD 연소에 관한 실험 및 수치해석적 연구 (An Experimental and Numerical Study on the Oxy-MILD Combustion at Pilot Scale Heating Capacity)

  • 차천륜;이호연;황상순
    • 설비공학논문집
    • /
    • 제28권7호
    • /
    • pp.275-282
    • /
    • 2016
  • MILD (Moderate and Intense Low-oxygen Dilution) combustion using oxygen as an oxidizer is considered as one of the most promising combustion technologies for high energy efficiency and for reducing nitrogen oxide and carbon dioxide emissions. In order to investigate the effects of nozzle angle and oxygen velocity conditions on the formation of oxygen-MILD combustion, numerical and experimental approaches were performed in this study. The numerical results showed that the recirculation ratio ($K_V$), which is an important parameter for performing MILD combustion, was increased in the main reaction zone when the nozzle angle was changed from 0 degrees to 15 degrees. Also, it was observed that a low and uniform temperature distribution was achieved at an oxygen velocity of 400 m/s. The perfectly invisible oxy-MILD flame was observed experimentally under the condition of a nozzle angle of $10^{\circ}$ and an oxygen velocity of 400 m/s. Moreover, the NOx emission limit was satisfied with NOx regulation of less than 80 ppm.

CNG 및 CO2 겸용 수송을 위한 압력용기 개념 설계에 대한 연구 (Study on Conceptual Design of Pressure Vessel to Transport CNG and CO2)

  • 김영훈
    • 한국해양공학회지
    • /
    • 제27권1호
    • /
    • pp.51-58
    • /
    • 2013
  • Recently, there has been an increase in the demand for natural gas as a source of clean energy, which has increased the demand for LNG carriers. However, LNG carriers require a capital investment to obtain equipment for the regasification process, which prevents fires and explosions. Thus, on account of NIMBY, a CNG carrier is suggested that eliminates the need for regasification equipment. Meanwhile, carbon dioxide emissions are more and more regulated by international conventions such as the Kyoto Protocol. Because of this, $CO_2$ carriers have also received international attention as a methodology to transport and store $CO_2$ cargoes. Several vessels or tanks to transport and store $CO_2$ gas have been studied in various countries. This paper proposes a conceptual design for a 20ft container shaped tank to effectively transport small cargoes of $CO_2$ and CNG. The proposed pressure vessel or tank will be carried by a conventional containership or special cargo ship. The influences of the design parameters for proposed pressure vessel or tank. Including the materials, scantlings, and shape of the pressure vessel, are studied theoretically and computationally.

이산화탄소 저감형 시멘트 함량에 따른 경량기포 콘크리트의 물성평가 (Effect of Carbon Dioxide-reduced Cement on Properties of Lightweight-foamed Concrete)

  • 임동혁;이원기
    • 한국환경과학회지
    • /
    • 제29권6호
    • /
    • pp.605-612
    • /
    • 2020
  • To improve the initial strength and stability of lightweight-foamed concrete, which shows suitable sound absorption and insulation characteristics, the effect of CO2-reduced cement on the properties of the concrete was investigated. Various mixing ratios were applied by substituting a certain amount of slag and Calcium Sulfo Aluminate (CSA) in CO2-reduced Ordinary Portland Cement (OPC) and the physical properties of the samples were examined using the Korean Standard. The kiln temperatures of the CSA were 100-200℃ ; these values are lower than those of OPC and can lead to energy saving. In addition, the low limestone content reduces greenhouse gas emissions by 20 %. Adding a small amount of CSA in OPC content activates Ca-Al-H2-based hydrates, and the initial compressive strength of the concrete is improved. As the CSA content increased, the thermal conductivity of the concrete decreased by up to 8% compared to plain concrete, thus indicating an improvement in its insulation. Therefore, the settlement stability was improved as the addition of CSA shortened the setting time.

$CO_2$ 액화 사이클의 액화 성능 특성에 관한 연구 (Study on the liquefaction performance characteristic of $CO_2$ liquefaction cycle)

  • 송찬호;이공훈
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1312-1316
    • /
    • 2009
  • Growing interest in $CO_2$ capturing from industrial processes and storage in underground formations is emerging from commitments in reducing $CO_2$ emissions manifested in the Kyoto Protocol. In this paper, $CO_2$ liquefaction system is treated in focus of liquefaction efficiency & production rate. Presently $CO_2$ is transported in ships or trucks at a pressure of 14-20 bar. Considering this, the liquefaction pressures of 20, 15, 6.5 bar are selected. Compressor work and cooling capacity are calculated and compared. In order to investigate the effect of intercooling, the compressed gas after compressor work is cooled by ambient air or seawater. In case of applying the intercooling to the system, consuming energy can be saved larger than 20%. In the lower liquefaction pressure, the more $CO_2$ can be obtained due to higher density. In the liquefaction pressure of 6.5 bar, its $CO_2$ production is about 35% higher than that of the system with the liquefaction pressure, 20 bar.

  • PDF

바이오에너지 원료작물 생산 및 연구동향 (Bioenergy Crop Production and Research Trends)

  • 김광수;김용범;장영석;방진기
    • Journal of Plant Biotechnology
    • /
    • 제34권2호
    • /
    • pp.103-109
    • /
    • 2007
  • The increasing industrialization of the world has led to precipitous rise for the demand of petroleum-based fuels. The world is presently confronted with the twin crises of fossil fuel depletion and environmental pollution. The search for alternative fuels, which promise a harmonious correlation with sustainable development, energy conservation, efficiency and environmental preservation, has become highly pronounced in the present. Bioenergy is playing an increasingly important role as an alternative and renewable source of energy. Use of Bioenergy has several potential environmental advantages. The most important perhaps is reduction in life cycle greenhouse gases emissions relatives petroleum fuels, since bioenergy is derived from plants which convert Carbon dioxide ($CO_{2}$) into Carbohydrates in their growth. Bioenergy includes solid biomass, biomas and liquid bio-fuels which are fuels derived from crop plants, and include biomass that's directly burned. The two most important bio liquid fuels today are bioethanol from fermenting grain, grass, straw or wood, and biodiesel from plant seed oil.

철도용 연료전지 및 유도급전을 이용한 Hybrid system 연구 (The Study of Hybrid system using FC and IPT for Railway system)

  • 한경희;이병송;박현준;권삼영;백수현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.218-220
    • /
    • 2008
  • Urban air quality, including carbon-dioxide emissions, and national energy security are related issues affecting the rail industry and transportation sector as a whole. They are related by the fact that (in the United States) 97-98% of the energy for the transport sector is based on oil, and more than 60% is imported. A fuelcell locomotive combines the environmental advantages of a catenary-electric locomotive with the higher overall energy efficiency and lower infrastructure costs of a diesel-electric. Catenaryelectric locomotives, when viewed as only one component of a distributed machine that includes an electricity-generating plant and transmission lines, are the least energy-efficient locomotive type. The natural fuel for a fuelcell is hydrogen, which can be produced from many renewable energies and nuclear energy, and thus a hydrogen-fuelcell locomotive will not depend on imported oil for its energy supply. This paper proposes a base models of Hybrid fuel cell/IPT railway vehicle power system, the necessary of this research.

  • PDF

DC 저온플라즈마를 이용한 디젤엔진 유해 배기가스 저감에 관한 실험적 연구 (The Experimental Study on the Removal of Diesel Engine Pollutant Emissions Using DC Non-Thermal-Plasma(NTP))

  • 채재우;황재원;정지용;한정희;황화자;김석
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.35-42
    • /
    • 2001
  • The diesel engine exhaust gas is know as one of the causes to produce photochemical smog, which causes damage on environmental. However, due to the high thermal efficiency and low carbon dioxide emission, the usage of a diesel engine is prevailed. In this study, the DC non-thermal plasma technology used to the particulate matter (PM) aftertreatment. The exhaust gas characteristics and energy density were investigated on the dynamometer test bed and chassis dynamometer with CVS-75 mode in a passenger diesel car. It was reported that the smoke removal efficiency has around the 70% in the dynamometer test with 80W energy consumption and the PM removal efficiency has the 68% in the real car test. The NOx also reduced the 20% according to electrode type respectively. Considering these results, plasma technology is one of the ways to simultaneously removing method the particulate matter (PM) and NOx.

  • PDF