• Title/Summary/Keyword: carbon-dioxide emissions

Search Result 458, Processing Time 0.029 seconds

A Study on Carbon Incentive System Based on Investigation of Energy Consumption in Korean Universities (대학 캠퍼스의 에너지 소비 실태 조사를 통한 탄소 인센티브 제도 연구)

  • Kim, Kyung-Su;Shin, Moon-Su;Koo, Ja-Kon
    • Hwankyungkyoyuk
    • /
    • v.23 no.2
    • /
    • pp.65-81
    • /
    • 2010
  • Universities which have taken an important role to develop the human resources, became one of emitters of greenhouse gases, they need to find a way to reduce global warming gases through reduction of energy consumption. This study is intented to propose a solution that can reduce the greenhouse gases at universities located in Korea. To conduct this study, we have chosen a university at Wonju in Kangwon province for a case study and investigated the emissions of carbon dioxide from campus facilities and residential area. The data has become a footstone to estimate the assumed amount of carbon emission for top 23 energy consumption universities in Korea. We calculate the amount for carbon emission, not only for facilities in campus, but also for residential buildings, amount for emission is increased severely by showing $9780.94tCO_2$, which is 2.1 times more than average amount for emission of greenhouse gases researched in existing statistics. Universities have difficulty in introducing new energy generation system, as having been done business companies or other commercial facilities but they are required to introduce some educational methods since it is a academic space. Incentive to universities reducing carbon emission in campus is a system to provide incentives with students, professors, administrative personnels and others in campus as a compensation for their efforts to save energy. It is needed to establish the infrastructures for measuring energy consumption in campus.

  • PDF

Effect of Multiple Injection on the Performance and Emission Characteristics of Lean Burn Gasoline Direct Injection Engines (다단분사가 초희박 GDI 엔진의 성능 및 배기에 미치는 영향)

  • Oh, Jin-Woo;Park, Cheol-Woong;Kim, Hong-Suk;Cho, Gyu-Baek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.137-143
    • /
    • 2012
  • Currently, in order to meet the reinforced emissions regulations for harmful exhaust gas including carbon dioxide ($CO_2$) as a greenhouse gas, technologies for reducing $CO_2$ emission and fuel consumption are being developed. Gasoline direct injection (GDI) systems have the advantage of improved fuel economy and higher power output than port fuel injection gasoline engine systems. The aim of this study is to examine the performance and emission characteristics of a lean burn GDI engine equipped with spray-guided-type combustion system. Stable lean combustion was achieved with a late fuel injection strategy under a constant operating condition. Further improvement in specific fuel consumption is possible with the introduction of multiple fuel injection strategies, which also increases hydrocarbon (HC) and nitrogen oxide ($NO_x$) emissions and decreases carbon monoxide (CO) emission.

Effects of Persuader and Persuasion Message of Bicycle Exploration Journey (자전거 탐방여행의 설득원과 설득메시지의 효과)

  • Park, Joung-Koo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.5
    • /
    • pp.13-23
    • /
    • 2009
  • This study investigated the effects of thae persuader and the persuasion message in order to reduce carbon dioxide emissions and activate the exploration journey using bicycles, a form of green transportation, in this green society age. Furthermore, the effects that predictive variables related to the implementation of an infrastructure for bicycles have on the intentions toward an exploration journey using bicycles were examined. The questionnaire survey was administered to 257 respondents for 9 days from March 14 to March 22, 2009. Since Gyeongju has a number of cultural relics that people can look at in one day, Gyeongju is ideal for examining a variety of tourist opinions about exploring cultural relics using bicycles. In conclusion, it was found that the 'persuader' and 'persuasion message' enhanced the desire for bicycle exploration journeys from 'will use a bicycle if possible' to 'want to use a bicycle'. In accordance with two-way ANOVA results on the desire for bicycle exploration journeys by persuader and persuasion message, the persuasion approach emphasizing health effects and geared toward bicycle enthusiasts was significantly effective. Furthermore, the most effective approach was the persuasion strategy emphasizing the 'citizens' and 'health', and 'citizens' and 'eco-friendly' among the effects created by connection of persuader and persuasion message.

Effect of Weathering of Bottom Ash on Mitigation of Green House Gases Emission from Upland Soil (밭토양에서 저회의 풍화가 온실가스 배출 저감에 미치는 영향)

  • Heo, Do Young;Hong, Chang Oh
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.245-253
    • /
    • 2019
  • BACKGROUND: Weathering of bottom ash (BA) might induce change of its surface texture and pH and affect physical and chemical properties of soil associated with greenhouse gas emission, when it is applied to the arable soil. This study was conducted to determine effect of weathering of BA in mitigating emission of greenhouse gases from upland soil. METHODS AND RESULTS: In a field experiment, methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) emitted from the soil was periodically monitored using closed chamber. Three month-weathered BA and non-weathered BA were applied to an upland soil at the rates of 0, 200 Mg ha-1. Maize (Zea mays L.) was grown from July 1st to Oct 8th in 2018. Both BAs did not affect cumulative CH4 emission. Cumulative CO2 emission were 23.1, 19.8, and 18.8 Mg/ha/100days and cumulative N2O emission were 35.8, 20.9, and 17.7 kg/ha/100days for the control, non-weathered BA, and weathered BA, respectively. Weathering of BA did not decrease emission of greenhouse gases significantly, compared to the weathered BA in this study. In addition, both BAs did not decrease biomass yields of maize. CONCLUSION: BA might be a good soil amendment to mitigate emissions of CO2 and N2O from arable soil without adverse effect on crop productivity.

Optimal CO2 Enrichment Considering Emission from Soil for Cucumber Greenhouses

  • Lee, DongHoon;Lee, KyouSeung;Cho, Yong Jin;Choi, Jong-Myoung;Kim, Hak-Jin;Chung, Sun-Ok
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.501-508
    • /
    • 2012
  • Reducing carbon dioxide ($CO_2$) exhaust has become a major issue for society in the last few years, especially since the initial release of the Kyoto Protocol in 1997 that strictly limited the emissions of greenhouse gas for each country. One of the primary sectors affecting the levels of atmospheric greenhouse gases is agriculture where $CO_2$ is not only consumed by plants but also produced from various types of soil and agricultural ecosystems including greenhouses. In greenhouse cultivation, $CO_2$ concentration plays an essential role in the photosynthesis process of crops. Optimum control of greenhouse $CO_2$ enrichment based on accurate monitoring of the added $CO_2$ can improve profitability through efficient crop production and reduce environmental impact, compared to traditional management practices. In this study, a sensor-based control system that could estimate the required $CO_2$ concentration considering emission from soil for cucumber greenhouses was developed and evaluated. The relative profitability index (RPI) was defined by the ratio of growth rate to supplied $CO_2$. RPI for a greenhouse controlled at lower set point of $CO_2$ concentration (500 ${\mu}mol{\cdot}mol^{-1}$) was greater than that of greenhouse at higher set point (800 ${\mu}mol{\cdot}mol^{-1}$). Evaluation tests to optimize $CO_2$ enrichment concluded that the developed control system would be applicable not only to minimize over-exhaust of $CO_2$ but also to maintain the crop profitability.

Measuring the Greenhouse Gas Emission Reduction and Management System Using Bluetooth Sensor Node (블루투스 센서노드를 이용한 온실가스 배출 저감 측정 및 관리시스템)

  • Lee, Seung-Jin;Jin, Kyo-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1095-1100
    • /
    • 2013
  • Carbon dioxide is a major cause for which accelerates Global Warming. Therefore several countries are working on the project recommended to use a bicycle instead of the car when you move to the nearby destination in an effort to reduce the emissions of carbon dioxide. In this paper, It was developed to measure the greenhouse gas reduction using Bluetooth Sensor Node by riding a bicycle instead of a car and management system in order to authenticate the riding record. The developed application provides various information such as individual bicycle mileage, greenhouse gas reductions, bicycle riding path, the number of planted ginkgo trees. This proposed system is expected to be helpful to green house gas emission reduction because the usage rate of bicycle will increase if government combine ways to offer people rewards such as pin money or tax breaks for people who take advantage of the bicycle with the project.

GHGs Emissions Based on Individual Vehicles Speed (개별차량 속도기반 온실가스 배출량 산정 연구)

  • Chang, Hyunho;Choi, Seonghun;Yoon, Byungjo
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.560-569
    • /
    • 2019
  • Purpose: Greenhouse gases are one of the major causes of global warming, a global disaster. This study aims to calculate road sector greenhouse gas emissions more precisely than conventional methods. Method: Currently, the average speed of a vehicle is used to calculate greenhouse gas emissions. In this study, GHG emissions are calculated using the speed of individual vehicles and compared with current methods. Result: It was confirmed that the existing emission estimation method underestimated about 15% in the case of carbon dioxide, about 1% in the case of nitrous oxide, and about 1% in the case of methane. Conclusion: Current methods of estimating greenhouse gas emissions were developed before 2000 and were developed to meet the limits of available data. However, with the advancement of technology, the quality of available data is now high, and new emissions estimation methods are needed. Therefore, in this study, we propose a method for estimating the velocity-based greenhouse gas emissions of individual vehicles as a more accurate method for calculating greenhouse gas emissions.

Study on the Performance of an SI Gas Engine by Fuel Composition and Spark Plug Variation (연료 조성 및 스파크 플러그 위치 변경으로 인한 가스 엔진의 성능에 관한 연구)

  • Kim, Yongrae
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.6
    • /
    • pp.21-26
    • /
    • 2014
  • Renewable gas fuels such as biogas and landfill gas have carbon-neutral nature which can reduce carbon dioxide. However, it is necessary to make stable combustion when this fuel is used in power generating SI(spark ignition) gas engines due to its low heating value and non-uniformity. In this study, it was shown that addition of hydrogen can increase combustion stability of gas engine which is running with high inert gas composition. Thermal efficiency and emission characteristics of this engine was also investigated. In addition, a new spark plug with a long electrode was tested and compared with a base spark plug as a way to improve engine efficiency and reduce exhaust emissions.

A Study on the Analysis of Smoke Density Characteristics for Wood-Plastic Composites (합성목재의 연기밀도특성 분석에 관한 연구)

  • Shin, Baeg-Woo;Song, Young-Ho;Rie, Dong-Ho;Chung, Kook-Sam
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.119-124
    • /
    • 2011
  • In this study, we measured the smoke density characteristics to find the fire risk of Wood-Plastic composites (WPCs) which are one of spotlighting materials for landscape architecture and residential construction material with the cone calorimeter tester (by ISO 5660-2) and the smoke density tester (by ASTM E 662). In addition, the identical test was implemented to compare the smoke density characteristics between the red pine and the antiseptic wood. The result of cone calorimeter test showed that emissions of carbon monoxide, carbon dioxide and total smoke production rate of WPCs were higher than those of red pine and antiseptic wood. And the result of smoke density test showed that maximum specific optical smoke density(Dm) of WPCs was higher than that of red pine and antiseptic wood as well.

Quadrilateral RAC filled FRP tubes: Compressive behavior, design and finite element models

  • Ming-Xiang Xiong;Xuchi Chen;Fengming Ren
    • Steel and Composite Structures
    • /
    • v.48 no.5
    • /
    • pp.485-498
    • /
    • 2023
  • The need for carbon neutrality in the world strives the construction industry to reduce the use of construction materials. Aiming to this, recycled aggregate concrete (RAC) could be used as it reduces the carbon dioxide emissions. Currently, RAC is mainly used in non-structural members of civil constructions, seldom used in structural members. To broaden its structural use, a new type of composite column, i.e., the square and rectangular RAC filled FRP tubes (CFFTs), has been concerned in this study. The investigation on their axial compressive behavior through physical test and numerical analysis demonstrated that the load-carrying capacity of such column is reduced with the increase of replacement ratio of recycled aggregate and aspect ratio of section but can be improved by the increase of FRP confining stiffness and corner radius, said capacity can be equivalent to their steel reinforced concrete counterparts. At failure, the hoop strain at corner of tube is unexpectedly smaller than that at flat side of the tube although the FRP tube ruptured at its corner first, revealing a premature failure. Besides, a design-oriented stress-strain model of concrete and an analysis-oriented finite element model are proposed to predict the load-strain response of square and rectangular CFFT columns, which facilitates the engineering use of RAC in load-carrying structural members.