• Title/Summary/Keyword: carbon waste

Search Result 932, Processing Time 0.03 seconds

Isolation and Characterization of Bacteria Capable of Degrading Bisphenol A (Bisphenol A 분해세균의 분리 및 특성)

  • 김희식;이영기;이완석;박찬선;윤병대;오희목
    • Korean Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.189-196
    • /
    • 2001
  • Eighty-seven microbial strains capable of growing on bisphenol A (BPA) as a sole carbon source were isolated from soils, waste waters and sludges. Among them, three bacterial strains were finally selected as potential decomposers through measuring BPA-degradation efficiency by HPLC analysis. Two of these bacterial strains were identified as Serratia marcescens 1901 and S. marcescens 1902, and another was Pseudomonas putida 1401 by 16S rDNA partial sequences and based on morphological and physiological properties. They showed higher cell growth and BPA degradation in PAV (PAS medium containing vitamin mixtures) than in PAS medium. The degradation efficiencies of these bacterial strains were within a range of 20-40% in the PAV containing 500 mg/1 or 100 mg/l of BPA fur 3 days. S. marcescens 1901 showed higher degradation efficiency at 100 mg/1 of BPA than those of other selected strains, while S. marcescens 1902 and P. putida 1401 degraded a high concentration of BPA (500 mg/l) with a degradation efficiency of 40% for 3 days. The BPA degradation using a mixed culture of three selected strains showed the similar level of dog-radation efficiency with that using a pure culture.

  • PDF

The Fractural-Mechanical Properties and Durability of Lightweight Concrete Using the Synthetic Lightweight Aggregate (합성경량골재(SLA)를 사용한 경량콘크리트의 파괴, 역학적 특성 및 내구성)

  • Jo Byung-Wan;Park Seung-Kook;Park Jong-Bin;Daniel C. Jansen
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.19-25
    • /
    • 2005
  • Recycling of waste materials in the construction Industry is a useful method that can cope with an environment restriction of every country. In this study, synthetic lightweight aggregates are manufactured with recycled plastic and fly ash with 12 percent carbon. Nominal maximum-size aggregates of 9.5 mm were produced with fly ash contents of 0, 35, and $80\%$ by the total mass of the aggregate. An expanded clay lightweight aggregate and a normal-weight aggregate were used as comparison. Gradation, density, and absorption capacity are reported for the aggregates. Five batches of concrete were made with the different coarse aggregate types. Mechanical properties of the concrete were determined including density, compressive strength, elastic modulus, splitting tensile strength, fracture toughness, and fracture energy. Salt-scaling resistance, a concrete durability property, was also examined. Compressive and tensile strengths were lower for the synthetic aggregates; however, comparable fracture properties were obtained. Relatively low compressive modulus of elasticity was found for concretes with the synthetic lightweight aggregate, although high ductility was also obtained. As nv ash content of the synthetic lightweight aggregate increased, all properties of the concrete were improved. Excellent salt-scaling resistance was obtained with the synthetic lightweight aggregate containing 80 percent fly ash.

The Technology Development Trends of Supercritical CO2 Power Generation (초임계 CO2 발전 기술개발 동향)

  • Kim, Beom-Ju
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.531-536
    • /
    • 2016
  • The worldwide research and development for high-efficiency power generation system is progressing steadily because of the growing demand for reducing greenhouse gas emissions. Many countries have spurred the research and development of supercritical $CO_2$ power generation technology since 2000 because it has the advantage of compactness, efficiency, and diversity. Supercritical $CO_2$ power generation system can be classified into an indirect heating type and a direct heating type. As of now, most studies have concentrated on the development of indirect type supercritical $CO_2$ power generation system. In the United States, NREL(National Renewable Energy Lab.) is developing supercritical $CO_2$ power generation system for Concentrating Solar Power. In addition, U.S. DOE(Department of Energy) also plans to start investing in the development of the supercritical $CO_2$ power generation system for coal-fired thermal power plant this year. GE is developing not only 10MW supercritical $CO_2$ power generation turbomachinery but also the conceptual design of 50MW and 450MW supercritical $CO_2$ power generation turbomachinery. In Korea, the Korean Atomic Energy Research Institute has constructed the supercritical $CO_2$ power generation test facility. Moreover, KEPRI(Korea Electric Power Research Institute) is developing a 2MW-class supercritical $CO_2$ power generation system using diesel and gas engine waste heat with Hyundai Heavy Industries.

Isolation of Cadmium-Tolerant Bacteria and Characterization of Cadmium Accumulation into the Bacteria Cell (카드뮴 내성균(耐性菌)의 분리(分離), 동정(同定)및 균체내(菌體內) 카드뮴 축적(蓄積) 특성(特性))

  • Cho, Ju-Sik;Han, Mun-Gyu;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.1
    • /
    • pp.77-85
    • /
    • 1992
  • Of the cadmium-tolerant 162 bacterial strains isolated from soils, river waters or active sludges of waste-water disposal plants in the Gyeongnam province a strain C1, which showed considerably higher growth rate in the agar plate containing 2000 ppm than any other strains isolated, was identified as a Pseudomonas putida or its similar strain when analyzed by taxonomical characteristics. Optimum pH and temperature for the growth of the P, putida were 7.0 and $30^{\circ}C$, respectively. This strain was resistant to antibiotics(ampicillin, chloramphenicol and streptomycin), and heavy metals(lithium, cupper, lead and zinc). This strain utilized salicylate, naphthalene or xylene as a sole carbon source. The rate of cadmium accumulation in P. putida cell was enhanced at low concentration of Cd in the growth media. The maximum cadmium absorption by this strain grown in 1 and l0ppm of Cd was respectively 78% and 60% 24 hrs after culture, but in 100 ppm Cd, 40% 48 hrs after culture. Addition of a non-ionic surfactant Triton X-100(0.1%) to the medium enhanced the accumulation of cadmium in the P. putida up to approximately 37%.

  • PDF

Microbial Diversity in Three-Stage Methane Production Process Using Food Waste (음식물 쓰레기를 이용한 3단계 메탄생산 공정의 미생물 다양성)

  • Nam, Ji-Hyun;Kim, Si-Wouk;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.125-133
    • /
    • 2012
  • Anaerobic digestion is an alternative method to digest food wastes and to produce methane that can be used as a renewable energy source. We investigated bacterial and archaeal community structures in a three-stage methane production process using food wastes with concomitant wastewater treatment. The three-stage methane process is composed of semianaerobic hydrolysis/acidogenic, anaerobic acidogenic, and strictly anaerobic methane production steps in which food wastes are converted methane and carbon dioxide. The microbial diversity was determined by the nucleotide sequences of 16S rRNA gene library and quantitative real-time PCR. The major eubacterial population of the three-stage methane process was belonging to VFA-oxidizing bacteria. The archaeal community consisted mainly of two species of hydrogenotrophic methanogen (Methanoculleus). Family Picrophilaceae (Order Thermoplasmatales) was also observed as a minor population. The predominance of hydrogenotrophic methanogen suggests that the main degradation pathway of this process is different from the classical methane production systems that have the pathway based on acetogenesis. The domination of hydrogenotrophic methanogen (Methanoculleus) may be caused by mesophilic digestion, neutral pH, high concentration of ammonia, short HRT, and interaction with VFA-oxidizing bacteria (Tepidanaerobacter etc.).

Development of a Bioscrubber for Treatment of VOC Emissions from Contaminated Soil with Hydrocarbons (유류오염토양으로부터 발생하는 VOC가스처리를 위한 바이오스크러버 개발)

  • 장윤영;황경엽;곽재호;최대기
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.83-90
    • /
    • 1997
  • Aiming at the treatment of large volumes of gas with a low concentration of poorly water soluble VOC(Volatile Organic Compound), a new system is proposed: the combination absorption tower/bioreactor. In the scrubber part of the bioscrubbing system, the contaminating compounds are absorbed in a aqueous phase. The contaminated scrubbing liquid is transported to the bioreactor, where the compounds are biodegraded by aerobic microorganisms (mainly to carbon dioxide, water, and biomass). In this study, separation of a volatile organic compound(VOC) out of a waste gas stream has been carried out using a re-cyclable high boiling point extrant(HBE). The liquid stream containing a high boiling point entrant(HBE) scrubs the gas stream in a direct gas-liquid countercurrent contacting operation in a packed tower for the removal of said component from the gaseous stream. A packed-bed column using Pall Ring was set up in order to simulate practical conditions for the scrubbing tower. The liquid stream transported to the bioreactor is recovered and recycled to the scrubber. The model gas, which contained 400 mg/$\textrm{m}^3$ of toluene, at a rate of 100 L/min, flowed into the packed column where the scrubbing liquid trickled over the packing in countercurrent to the rising gas at 10~15L/min. The bioscrubber designed for large volume air streams containing VOCs showed removal efficiency up to 80% in an optimum operating conditions during the tests fer removing toluene from an air stream by scrubbing the air stream with HBE.

  • PDF

An Energy Characteristics of Carbonization Residue produced from Sewage Sludge Cake (하수슬러지 케익으로부터 생산한 탄화물의 에너지 특성)

  • Rhee, Seung-Whee
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.230-236
    • /
    • 2009
  • Sewage sludge cake(SSC) is seriously concerned because ocean dumping, which is the cheapest treatment method now, will be banned in 2012. On the basis of this reason, recycling of SSC is emphasized to convert the treatment method. One of the method to recycling SSC could be carbonization process which also can be reduced greenhouse gas effectively. And carbonization residue of SSC produced by carbonization process can become a renewable energy source. However, carbonization process has not been evaluated by considering basic operating data such as heating value, yield and fuel ratio. In this study, the basic characteristics of SSC such as proximate analysis, elementary analysis and heating value are analyzed. In carbonization process, the effect of carbonization temperature and time on the residue of SSC are estimated. And the analysis is carried out to obtain basic properties of the residue of SSC. From the result of chemical composition of SSC residue, there is 27% of phosphate in SSC. Phosphate will take a role of reductant to convert from hazardous substance to non-hazardous material. As increased carbonization temperature and time, heating value and yield are decreased but fuel ratio(fixed carbon/volatile combustible) of the residue is increased. In the carbonization process, the optimum temperature and time in carbonization test for SSC can be decided by $250^{\circ}C$ and 15 min, respectively. However, the carbonization residue of SSC can not be deserved to use one of renewable energy sources because the heating value at the optimum condition is relatively low. Hence, it is desirable that SSC can be mixed with other organic waste to carbonize.

Utilization of Egg-shell for Bread-making (제빵시 난각의 이용에 관한 연구)

  • Kim, Joong-Man;Kim, Yong-Seob;Yang, Hee-Chon;Choi, Yong-Bae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.18 no.2
    • /
    • pp.160-166
    • /
    • 1989
  • This study was conducted to investigate whether egg-shell may be used as a mineral sourceor leavening agent in breadmaking. In Korea the waste volume of egg shell has been estimated at about 28,694 tons per year. Carbon dioxide generation maxima were established for barking powder$(153{\pm}3ml/g)$, egg-shell(205in reaction with lactic acid) and yeast$(115{\pm}3ml/sugar\;g)$. Gas release time required for each substance to reach $CO_2$ maximum was, for baking powder 7 minutes, for egg-shell 45 mins and for yeast 240 mins. Particle size of egg-shell in breadmaking was suitable more than 20 mesh (-). When egg-shell only was added to the basic formular without including lactic acid, no leavening effect was observed. However, when lactic acid and egg-shell were used together, the leavening effect was more or less equivalent to that of yeast(control). Addition of egg-shell was found to increase calcium content of bread products without noticeable altering flavor, as compared with control. Joint use of egg-shell was organic acids in breadmaking was shown to have potential in time saving, volume increase and yeast saving.

  • PDF

Properties of Non-Sintered Cement Mortar using Alkali and Sulfate Mixed Stimulants Accroding to Curing Method (양생방법에 따른 알칼리 및 황산염 복합자극제를 사용한 비소성 시멘트 모르타르의 특성)

  • Park, Sung-Joon;Kim, Ji-Hoon;Hyung, Won-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.237-244
    • /
    • 2015
  • Entering the 20th century since the industrial revolution, the cement has been widely used in the field of construction and civil engineering due to the remarkable development of construction industry. However, result from that development, each kind of industrial by-products and waste and the carbon dioxide generated in the process of cement production cause air pollution and environmental damage so earth is getting sick now slowly. Therefore, we have to recognize importance about this. It means that the time taking specific and long-term measures have come. In this research paper, as substitution of the cement generating environmental pollution, we investigate the hydration reaction of non-Sintered Cement mortar mixed with GBFS, active stimulant of alkaline and sulphate series by using SEM and XRD, mechanical and chemical properties according to the curing method. As a result of this experiment, NSC realized outstanding strength for water curing and steam curing. It means that it has a good possibility as substitution of cement. From now on, it can be used for structure satisfying specific standard. We expect to find a substitution of outstanding cement by progressing continuous research making the best use of pros and cons according to the curing method.

Pink Pigmented Facultative Methylotrophic Bacteria(PPFMs): Introduction to Current Concepts (분홍색 색소를 형성하는 methylotrophic acteria(PPFMs): 최근 경향소개)

  • Munusamy, Madhaiyan;Sa, Tongmin;Kim, Jai-Joung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.266-287
    • /
    • 2004
  • The non infecting, plant associated bacteria have attracted increased attention for stimulating plant growth and as environmental friendly plant protecting agents. Pink-pigmented facultatively methylotrophic bacteria (PPFMs), classified as Methylobacterium spp., are persistent colonizers of plant leaf surfaces. As the leaves of most or all plants harbor PPFMs that utilize leaf methanol as their sole source of carbon and energy, which is a specific attribute of the genus Methylobacterium. Although they are not well known, these bacteria are co-evolved, interacting partners in plant metabolism. This claim is supported, for example, by the following observations: (1) PPFMs are seed-transmitted, (2) PPFMs are frequently found in putatively axenic cell cultures, (3) Low numbers of seed-borne PPFMs correlate with low germinability, (4) Plants with reduced numbers of PPFM show elevated shoot/root ratios, (5) Foliar application of PPFMs to soybean during pod fill enhances seed set and yield, (6) Liverwort tissue in culture requires PPFM-produced vitamin B12 for growth, (7) treated plants to suppress or decrease disease incidence of sheath blight caused by Rhizoctonia solani in rice, and (8) the PPFM inoculation induced number of stomata, chlorophyll concentration and malic acid content, they led to increased photosynthetic activity. Methylobacterium spp. are bacterial symbionts of plants, shown previously to participate in plant metabolism by consuming plant waste products and producing metabolites useful to the plant. There are reports that inform about the beneficial interactions between this group of bacteria and plants. Screening of such kind of bacteria having immense plant growth promoting activities like nitrogen fixation, phytohormone production, alleviating water stress to the plants can be successfully isolated and characterized and integration of such kind of organism in crop production will lead to increased productivity.