• Title/Summary/Keyword: carbon waste

Search Result 932, Processing Time 0.034 seconds

Production of Medium-chain-length Poly (3-hydroxyalkanoates) by Pseudomonas sp. EML8 from Waste Frying Oil (Pseudomonas sp. EML8 균주를 이용한 폐식용류로부터 medium-chain-length poly(3-hydroxyalkanoates) 생합성)

  • Kim, Tae-Gyeong;Kim, Jong-Sik;Chung, Chung-Wook
    • Journal of Life Science
    • /
    • v.31 no.1
    • /
    • pp.90-99
    • /
    • 2021
  • In this study, to reduce the production cost of poly(3-hydroxyalkanoates) (PHA), optimal cell growth and PHA biosynthesis conditions of the isolated strain Pseudomonas sp. EML8 were established using waste frying oil (WFO) as the cheap carbon source. Gas chromatography (GC) and GC mass spectrometry analysis of the medium-chain-length PHA (mcl-PHAWFO) obtained by Pseudomonas sp. EML8 of WFO indicated that it was composed of 7.28 mol% 3-hydrxoyhexanoate, 39.04 mol% 3-hydroxyoctanoate, 37.11 mol% 3-hydroxydecanoate, and 16.58 mol% 3-hydroxvdodecanoate monomers. When Pseudomonas sp. EML8 were culture in flask, the maximum dry cell weight (DCW) and the mcl-PHAWFO yield (g/l) were showed under WFO (20 g/l), (NH4)2SO4 (0.5 g/l), pH 7, and 25℃ culture conditions. Based on this, the highest DCW, mcl-PHAWFO content, and mcl-PHAWFO yield from 3-l-jar fermentation was obtained after 48 hr. Similar results were obtained using 20 g/l of fresh frying oil (FFO) as a control carbon source. In this case, the DCW, the mcl-PHAFFO content, and the mcl-PHAFFO yields were 2.7 g/l, 62 wt%, and 1.6 g/l, respectively. Gel permeation chromatography analysis confirmed the average molecular weight of the mcl-PHAWFO and mcl-PHAFFO to be between 165-175 kDa. Thermogravimetric analysis showed decomposition temperature values of 260℃ and 274.7℃ for mcl-PHAWFO and mcl-PHAFFO, respectively. In conclusion, Pseudomonas sp. EML8 and WFO could be suggested as a new candidate and substrate for the industrial production of PHA.

A Study of 2,4,6-Trinitrotoluene Transformation under Denitrification Conditions (탈질 미생물의 2,4,6-Trinitrotoluene(TNT) 분해에 관한 연구)

  • Lee, Taejin;Ga, Hyunjin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.303-311
    • /
    • 2000
  • This study was conducted to find an optimal TNT transformation condition with the addition of different carbon and energy sources in a batch reactor. When TNT and nitrate were present in the medium, the cell growth and TNT transformation was slower because nitrate and TNT was competitively served as electron acceptor. Transformation of TNT was faster when TNT in the medium was nitrogen source and acetate as a carbon source. Cell growth and nitrate transformation was slower when yeast extract was not present in the medium. The proposed intermediates of TNT biotransformation from the earlier studies was not detected in this experiment but the intermediates are tentatively proposed as nitro and amino-free compounds. These results should be helpful for the operation of the munition waste treatment in the future.

  • PDF

Production of Hydrogen by Thermochemical Transition of Lauan Sawdust in Steam Reforming Gasification (수증기개질 가스화반응을 이용한 나왕톱밥으로부터 수소제조특성)

  • Park, Sung-Jin;Kim, Lae-Hyun;Shin, Hun-Yong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.908-912
    • /
    • 2012
  • Lauan sawdust was gasified by steam reforming for hydrogen production from biomass waste. The fixed bed gasification reactor with 1m height and 10.2 cm diameter was utilized for the analysis of temperature and catalysts effect. Steam was injected to the gasification reactor for the steam reforming effect. Lauan sawdust was mixed with potassium carbonate, sodium carbonate, calcium carbonate, sodium carbonate + potassium carbonate and magnesium carbonate + calcium carbonate catalysts of constant mass fraction of 8:2 which was injected to the fixed gasification equipment. The compositions of production gas of gasification reaction were analyzed at the temperature range from $400^{\circ}C$ to $700^{\circ}C$. Fractions of hydrogen, methane and carbon monoxide gas in the production gas increased when catalysts were used. Fractions of hydrogen, methane and carbon monoxide gas were increased with increasing temperature. The highest hydrogen yield was obtained with sodium carbonate catalyst.

One-step microwave synthesis of magnetic biochars with sorption properties

  • Zubrik, Anton;Matik, Marek;Lovas, Michal;Stefusova, Katarina;Dankova, Zuzana;Hredzak, Slavomir;Vaclavikova, Miroslava;Bendek, Frantisek;Briancin, Jaroslav;Machala, Libor;Pechousek, Jiri
    • Carbon letters
    • /
    • v.26
    • /
    • pp.31-42
    • /
    • 2018
  • Adsorption is one of the best methods for wastewater purification. The fact that water quality is continuously decreasing requires the development of novel, effective and cost available adsorbents. Herein, a simple procedure for the preparation of a magnetic adsorbent from agricultural waste biomass and ferrofluid has been introduced. Specifically, ferrofluid mixed with wheat straw was directly pyrolyzed either by microwave irradiation (900 W, 30 min) or by conventional heating ($550^{\circ}C$, 90 min). Magnetic biochars were characterized by X-ray powder diffraction, $M{\ddot{o}}ssbauer$ spectroscopy, textural analysis and tested as adsorbents of As(V) oxyanion and cationic methylene blue, respectively. Results showed that microwave pyrolysis produced char with high adsorption capacity of As(V) ($Q_m=25.6mg\;g^{-1}$ at pH 4), whereas conventional pyrolysis was not so effective. In comparison to conventional pyrolysis, one-step microwave pyrolysis produced a material with expressive microporosity, having a nine times higher value of specific surface area as well as total pore volume. We assumed that sorption properties are also caused by several iron-bearing composites identified by $M{\ddot{o}}ssbauer$ spectroscopy ([super] paramagnetic $Fe_2O_3$, ${\alpha}-Fe$, non-stoichiometric $Fe_3C$, ${\gamma}-Fe_2O_3$, ${\gamma}-Fe$) transformed from nano-maghemite presented in the ferrofluid. Methylene blue was also more easily removed by magnetic biochar prepared by microwaves ($Q_m=144.9mg\;g^{-1}$ at pH 10.9) compared to using conventional techniques.

Isolation and Characterization of Denitrifying Phenol-Degrading Bacterium Pseudomonas sp. HL100. (탈질화성 페놀 분해균 Pseudomonas sp. HL100의 분리 및 특성)

  • 박수동;김연희;이흥식
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.4
    • /
    • pp.303-308
    • /
    • 1998
  • A bacterial strain which utilizes phenol under denitrifying condition was isolated from the industrial waste water collected from the Chong-ju Industrial Complex. The strain was identified as Pseudomonas species from the morphological, physiological, and biochemical characteristics and designated as HL100. The strain can utilize phenol as the sole source of carbon and energy when nitrate is provided as the terminal electron acceptor. The isolated strain completely degraded 3 mM of phenol within 110 hour with concomitant reduction of nitrate to nitrite. The observed maximum doubling time was 20 hours. Under appropriate condition, complete reduction of nitrate to atmospheric N$_2$ was observed indicating that the isolated strain could perform complete steps of denitrification. The strain showed optimal growth at pH 7.0 and temperature of 37$^{\circ}C$ under denitrifying phenol-degrading condition. The strain can also utilize toluene as the sole carbon and energy source under the same growth condition. However, no growth was detected on xylene and benzene.

  • PDF

Isolation of a Nonylphenol-degrading Microbial Consortium (Nonylphenol 분해 미생물 컨소시엄 균주 개발)

  • Song, Won;Lim, Keun-Sick;Yu, Dae-Ung;Park, Mi-Eun;Jeong, Eun-Tak;Kim, Dong-Myung;Chung, Yong-Hyun;Kim, Young-Mog
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.4
    • /
    • pp.325-331
    • /
    • 2011
  • Nonylphenol (NP), which is well known as an endocrine disrupter, has been detected widely in untreated sewage or waste water streams. Given the necessity of discovering an eco-friendly method of degrading this toxic organic compound, this study was conducted to isolate NP-degrading microorganisms from the aqueous environment. NP-degrading microbes were isolated through NP-containing enrichment culture. Finally, a microbial consortium, SW-3, capable of degrading NP with high efficiency, was selected from the mixture sample. The microbial consortium SW-3 was able to degrade over 99% of 100 ppm NP in the culture medium for 40 days at $25^{\circ}C$. The microbial consortium SW-3 seemed to utilize NP as a carbon source, since NP was the sole carbon source in the culture medium. In order to isolate the NP-degrading bacterium, we further conducted single colony isolation using the microbial consortium SW-3. Four strains isolated from SW-3 exhibited lower NP-degradation efficiency than that of SW-3, suggesting that NP was degraded by the co-metabolism of the microbial consortium. We suggest that the microbial consortium obtained in this study would be useful in developing an eco-friendly bioremediation technology for NP degradation.

Economic Feasibility Study for Commercial Production of Bio-hydrogen (해양바이오수소개발 사업의 상업생산을 위한 예비경제성평가)

  • Park, Se-Hun;Yoo, Young-Don;Kang, Sung Gyun
    • Ocean and Polar Research
    • /
    • v.38 no.3
    • /
    • pp.225-234
    • /
    • 2016
  • This project sought to conduct an economic feasibility study regarding the commercial production of bio-hydrogen by the marine hyperthermophilic archaeon, Thermococcus onnurineus NA1 using carbon monoxide-containing industrial off-gas. We carried out the economic evaluation of the bio-hydrogen production process using the raw material of steel mill by-product gas. The process parameter was as follows: $H_2$ production rate was 5.6 L/L/h; the conversion of carbon monoxide was 60.7%. This project established an evaluation criterion for about 10,000 tonne/year. Inflation factors were considered as 3%. The operating costs were recalculated based on prices in 2014. The total investment required for development was covered 30% by capital and 70% by a loan. The operation cost for the 0.5-year test and integration, and the cost for the first three months in the 50% production period were considered as the working capital in the cost estimation. The costs required for the rental of office space, facilities, and other related costs from the construction through to full-scale production periods were considered as continuing expenses. Materials, energy, waste disposal and other charges were considered as the operating cost of the development system. Depreciation, tax, maintenance and repair, insurance, labor, interest rate charges, general and administrative costs, lubrication and miscellaneous expenses were also calculated. The hydrogen price was set at US$ 4.15/kg for the economic evaluation. As a result, the process was considered to be economical with the payback period of 6.3 years, NPV of 18 billion Won and IRR of 26.7%.

A Study on the Treatment of Refractory Organics by Redox Reaction of Cu-Zn Metal Alloy (Cu-Zn 금속 합금의 산화.환원 반응에 의한 난분해성 COD처리에 관한 연구)

  • Song, Ju-Yeong;Park, Ji-Won;Kim, Jong-Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.166-172
    • /
    • 2013
  • The purpose of this study is to evaluate the treatment ability of refractory organics in hot rolling precess waste water by redox(reduction and oxidation) reaction. Metal is oxidized in an aqueous solution to generate electron which can reduce water to generate hydroxy radical. These hydroxy radical is very effective to conduct hydrogen abstraction reaction and addition reaction to the carbon - carbon unsaturated link. The surface area of metal alloy reaction material is more than enough to get equilibrium at a single treatment. The efficiency of COD treatment by redox reaction showed maximum at mild pH of pH 7 and pH 6. But it was not effective in acidic atmosphere of pH 3, 4, 5 and basic atmosphere of pH 8 or over. Redox reaction system in much more helpful in a commercial coagulation sedimentation treatment than exclusive system.

Production of Amylase by a Filamentous Fungus, Strain FM04, and Enzymatic Hydrolysis of Food Waste (사상균 FM04에 의한 Amylase 생산 및 음식물 쓰레기의 효소학적 가수분해)

  • 김경철;배영수;김시욱;김성준
    • KSBB Journal
    • /
    • v.18 no.5
    • /
    • pp.363-370
    • /
    • 2003
  • A filamentous fungus, strain FM04 producing amylase was isolated from rotten yam peels and potatoes. The favorable conditions of cultivation factors such as, temperature, pH, and agitation speed of strain FM04 were 28∼30$^{\circ}C$, 5.0∼6.0, and 100 rpm, respectively. Starch was the best carbon source in the amylase production. Therefore, food wastes containing lots of starch were employed as the carbon source of the cultivation for the economical amylase production. 5.2 U/ml of amylase was obtained In the cultivation using 1 % (w/v) of food wastes. The amylase showed the highest activity at enzyme reaction conditions of 60$^{\circ}C$ and pH 4.5 and showed 90% of residual activity after the reaction at 50$^{\circ}C$ for 2 days. In the enzymatic hydrolysis reaction using 20% (w/v) of food wastes and 2.5 U/ml of amylase, 72.6 g/l of reducing sugar was obtained at the reaction condition of 50$^{\circ}C$, pH 4.5 for 2 days.

Assessment of Physicochemical Properties of Domestic Bentonite and Zeolite as Candidate Materials for a Engineered Barrier in a Radwaste Repository (방사성폐기물 처분장 공학방벽 재료로서의 국산 벤토나이트 및 제올라이트에 대한 물리화학적 특성 평가)

  • 정찬호
    • The Journal of Engineering Geology
    • /
    • v.9 no.2
    • /
    • pp.89-100
    • /
    • 1999
  • This study was carried out to assess the physicochemical properties of domestic bentonites and zeolites from Tertiary Formation as the candidate material for a engineered barrier of a radioactive waste repository. Natural bentonite and zeolite samples were collected from nine bentonite mines and six zeolite mines in Yeonil-Gampo area. The commercial products of bentonite and zeolite were obtained from local companies. The collected samples were investigated to study the following physicochemical properties: X-ray diffraction patterns, swelling, cation exchange capacity(CEC), specific surface area, montmorillonite content, pH, organic carbon content, thermal property, microstruciure and chemical composition. Based on the physicochemical properties of bentonite and zeolite, the bentonites from U-41 and G-46 mines and the zeolites from Daedo and Y-1 mines are regarded as the most desirable candidate materials.

  • PDF