• Title/Summary/Keyword: carbon solubility

Search Result 235, Processing Time 0.026 seconds

Thermodynamic Interactions Among Carbon, Silicon and Iron in Carbon Saturated Manganese Melts (탄소 포화 Mn 합금 용액내 C, Si 및 Fe 사이의 열역학적 상호작용)

  • Paek, Min-Kyu;Lee, Won-Kyu;Jin, Jinan;Jang, Jung-Mock;Pak, Jong-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.45-51
    • /
    • 2012
  • Thermodynamics of carbon in manganese alloy melts is important in manufacturing low carbon ferromanganese and silico-manganese alloys. In order to predict the carbon solubility in liquid $Mn-Si-Fe-C_{sat}$ alloys as a function of melt composition and temperature, thermodynamic interactions among carbon, silicon and iron in carbon saturated liquid manganese should be known. In the present study, the effects of silicon and iron on the carbon solubility in Mn-Si, Mn-Fe and Mn-Si-Fe melts were measured in the temperature range from 1673 to 1773 K. The carbon solubility decreases significantly as silicon and iron contents increase in liquid manganese alloy. The interaction parameters among carbon, silicon and iron in carbon saturated liquid manganese were determined from the carbon solubility data and the Lupis' relation for the interaction coefficient at constant activity.

Simulation Model for Dissolution of Liquid $CO_2$ Discharged at Intermediate Depth of Ocean (중층심해에 분사된 액체 이산화탄소 용해 예측모델 개발)

  • 김남진;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.9
    • /
    • pp.718-726
    • /
    • 2003
  • Carbon dioxide ocean disposal is one of the promising options to reduce carbon dioxide concentration in the atmosphere because the ocean has vast capacity for carbon dioxide sequestration. However, the dissolution rate of liquid carbon dioxide in seawater must be known in advance in order to estimate the amount of carbon dioxide sequestration in the ocean. Therefore, in the present study, calculations of the solubility, the surface concentration and the dissolution behavior of carbon dioxide when liquid carbon dioxide is released at 1,000m and 1,500m in depth are peformed. The results show that the droplet is completely dissolved below 500 m in depth if the carbon dioxide droplet is released both at 1,000m in depth with the initial droplet diameter of 0.011m or less and at 1,500m in depth with the diameter of 0.016 or less. Also, the surface concentration of carbon dioxide droplet with the hydrate film is about 50% of carbon dioxide solubility at 1,500 m in depth and about 60% of carbon dioxide solubility at 1,000 m in depth.

Measurement and Correlation of Hinokitiol Solubility in Supercritical Carbon dioxide (초임계 이산화탄소에서 히노키치올의 용해도 측정과 예측)

  • Shin, Moon-Sam
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.489-492
    • /
    • 2011
  • Supercritical fluid technology has been an alternative for purification and separation of biological compounds in cosmetic, food, and pharmaceutical products. Solubility information of biological compounds in supercritical fluids is essential for choosing a supercritical fluid processes. The equilibrium solubility of hinokitiol was measured in supercritical carbon dioxide with a static method in the pressure range from 8 to 40 MPa and at temperatures equal to 313.2, 323.2 and 333.2 K. The experimental data were correlated well by Peng.Robinson equation of state and quasi-chemical nonrandom lattice fluid model.

  • PDF

Superitical fluid (SCF) technology application to the regeneration of industrial catalyst contaminated with toxic materials (독성폐기물로 오염된 산업촉매 재생공정에 초임계유체기술의 적용)

  • 이재동;윤용수;홍인권;정일현
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.1
    • /
    • pp.13-19
    • /
    • 1992
  • Supercritical fluid technology was applied to the regeneration of industrial catalyst contaminated with toxic materials. The regeneration process of activated loaded with phenol was proposed, then the adsorphon tower was packed with the activated carbon-bed. Phenol diffuses into supercritical carbon dioxide(SCC) through the micro-pore and voldge of the activated carbon. The saturated solubility of phenol in SCC depended on the density of SCC varing with temperature and pressure conditions. Therefore, the fasile phase equilibrium calculation model of dxpanded liquid One was proposed, and equilibrium solubility of phenol in SCC was calculated using the model theoretically. The regeneration mechanism of activated carbon was analysed by degree of saturation of phenol and diffusion in SCC. The solubility prediction was more satisfactory for the wide range of SCC density than the dense gas model and the desorption of phenol depended on the degree of saturation of phenol in SCC.

  • PDF

Effect of pH-dependent Solubility on Release Behavior of Alginate-Chitosan Blend Containing Activated Carbon

  • Oh, Ae-Ri;Jin, Dong-Hwee;Yun, Ju-Mi;Lee, Young-Seak;Kim, Hyung-Il
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.208-212
    • /
    • 2009
  • Alginate-chitosan blend containing coconut-based activated carbon was prepared as a drug delivery carrier in order to improve the loading and releasing capacity of the drug. The activated carbon was incorporated as effective adsorbent for drug due to the extremely high surface area and pore volume, high adsorption capacity, micro porous structure and specific surface activity. Alginate-chitosan blend containing coconut-based activated carbon showed the sustained release for a longer period. Alginate-chitosan blend showed higher release of drug as the pH increased and higher release of drug as the content of chitosan decreased due to the pH-dependent solubility of blend components.

Comparative Study on the Ocean Disposal Methods of Carbon Dioxide (이산화탄소 해양 분사방법에 대한 비교연구)

  • Kim Nam-Jin;Kim Chong-Bo
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.301-310
    • /
    • 2004
  • Carbon dioxide ocean disposal is one of the promising options to reduce carbon dioxide concentration in the atmosphere. So, in the present study, calculations of the solubility, the surface concentration and the dissolution behavior of carbon dioxide when liquid carbon dioxide is released at 1,000m and 1,500m in depth are performed. The results show that liquid carbon dioxide changes to carbon dioxide bubbles around 500m in depth, and the hydrate acts as a resistant layer for the dissolution of liquid carbon dioxide. Also. the injection of liquid carbon dioxide from a moving ship is more effective than that from a fixed pipeline.

Dissolution Characteristics of Liquid Carbon Dioxide Injected at the Intermediate Depth of the Ocean

  • Namjin Kim, Jaeyong-Lee;Byungki Hur;Taebeom Seo;Kim, Chongbo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1276-1285
    • /
    • 2000
  • The solubility, the surface concentration and the dissolution behavior of carbon dioxide in deep sea were numerically investigated. Base on the calculations the relations between the surface concentration of liquid carbon dioxide droplet with the hydrate film and the solubility and those between the ambient carbon dioxide concentration in the plume and the dissolution rate were obtained. The result show that a carbon dioxide droplet is released both at 1000 m in depth with the initial droplet diameter of 0.011 m or less and at 1500 m in depth with a diameter of 0.015 m or less, and the droplet is completely dissolved below 500 m in depth. The hydrate film acts as a resistant layer for the dissolution of liquid carbon dioxide, and the effect of the hydrate film on the dissolution of liquid carbon dioxide depended upon the depth.

  • PDF

Solubility of Carbon Dioxide in Poly(ethylene glycol) Dimethyl Ether (Poly(ethylene glycol) Dimethyl Ether에 대한 이산화탄소의 용해도)

  • Lee, Eun-Ju;Yoo, Jung-Deok;Lee, Byung-Chul
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.230-236
    • /
    • 2017
  • Solubility data of carbon dioxide ($CO_2$) in poly(ethylene glycol) dimethyl ether (PEGDME) are presented at pressures up to about 50 bar and at temperatures between 303 K and 343 K. The solubilities of $CO_2$ were determined by measuring the bubble point pressures of the $CO_2+PEGDME$ mixtures with various compositions using a high-pressure equilibrium apparatus equipped with a variable-volume view cell. To observe the effect of the PEGDME molecular weight on the $CO_2$ solubility, the $CO_2$ solubilities in PEGDME with two kinds of molecular weight were compared. As the equilibrium pressure increased, the $CO_2$ solubility in PEGDME increased. On the other hand, the $CO_2$ solubility decreased with increasing temperature. When compared at the same temperature and pressure, the PEGDME with a higher molecular weight gave smaller $CO_2$ solubility on a mass fraction and molality basis, but gave greater $CO_2$ solubilities on a mole fraction basis.

Solubility of Carbon Dioxide in Strongly Basic Ionic Liquid

  • Sung, Jun-Kyung;Kim, Sung-Hyun;Cheong, Min-Serk;Baek, Il-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2797-2800
    • /
    • 2010
  • For the purpose of developing advanced new absorbents for carbon dioxide, ionic liquids (ILs) are considered as alternative materials due to their superior properties to conventional organic solvents. Since low $CO_2$ solubility in ionic liquids is a major concern for their application as absorbents, it is essential to focus on improving $CO_2$ absorbing capability of ILs. In this paper, strongly basic ionic liquids, namely [$C_n$-mim]OPh (n = 2, 4, 6), have been synthesized and studied over a wide range of temperature and pressure changes. [$C_n$-mim]OPh can be easily synthesized from corresponding [$C_n$-mim]Cl and sodium phenoxide and has been found to be good $CO_2$ absorbents.

Effect of Diffusion on the Interfacial Adhesion of Poly(hydroxy ether) Coated Caron Fibers (계면확산에 의한 Poly(hydroxy ether) 코팅된 탄소섬유의 계면접착력 변화 연구)

  • 강현민;윤태호
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.15-21
    • /
    • 1999
  • Carbon fibers were coated with carboxy modified poly(hydroxy ether)(C-PHE, water dispersed), water soluble polymers poly(hydroxy ether ethanol amine)(PHEA) or water insoluble poly(hydroxy ether)(PHE). Interfacial shear strength of polymer coated carbon fibers was measured by micro-droplet tests with vinyl ester resin, and approximately 30 samples were tested. The interfacial adhesion of poly-mers to carbon fibers was also evaluated, and diffusion behavior of polymer films in vinyl ester resin was investigated. The carbon fibers after testing and diffusion samples were analysed by SEM in order to understand adhesion mechanism. Interfacial shear strength of carbon fibers was enhanced by the coating of PHE and C-PHE which have good or marginal solubility in vinyl ester resin, respectively, but not by the coating of PHEA possibly due to the poor solubility in vinyl ester resin.

  • PDF